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Abstract. Process Compensated Resonant Testing (PCRT) is a full-body nondestructive testing (NDT) method that measures the 

resonance frequencies of a part and correlates them to the part’s material and/or damage state. PCRT testing is used in the 

automotive, aerospace, and power generation industries via automated PASS/FAIL inspections to distinguish parts with nominal 

process variation from those with the defect(s) of interest. Traditional PCRT tests are created through the statistical analysis of 

populations of “good” and “bad” parts. However, gathering a statistically significant number of parts can be costly and time-

consuming, and the availability of defective parts may be limited. This work uses virtual databases of good and bad parts to create 

two targeted PCRT inspections for single crystal (SX) nickel-based superalloy turbine blades. Using finite element (FE) models, 

populations were modeled to include variations in geometric dimensions, material properties, crystallographic orientation, and 

creep damage. Model results were verified by comparing the frequency variation in the modeled populations with the measured 

frequency variations of several physical blade populations. Additionally, creep modeling results were verified through the 

experimental evaluation of coupon geometries. A virtual database of resonance spectra was created from the model data. The virtual 

database was used to create PCRT inspections to detect crystallographic defects and creep strain. Quantification of creep strain 

values using the PCRT inspection results was also demonstrated.  

 

INTRODUCTION 

Resonant Ultrasound Spectroscopy (RUS) correlates the resonance frequencies of a material directly to 

material elastic properties [1-2]. Process Compensated Resonance Testing (PCRT) is the combination of RUS with 

advanced pattern recognition algorithms and statistical scoring that measures the resonance frequencies of a part and 

correlates them to the part’s material and/or damage state. PCRT is a well-established nondestructive testing (NDT) 

method used in the aerospace, power generation, and automotive industries for targeted defect detection, process 

variation monitoring, and outlier screening [3,4,5]. For instance, Delta Airlines’ maintenance division, Delta TechOps, 

received FAA approval to implement PCRT testing to identify overtemperature conditions in turbine blades [4].  
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PCRT inspections are created from the statistical analysis of a database of recorded resonance spectra. Within 

the database, spectra are classified as good or bad based on various nondestructive or destructive evaluations. The 

classified database, known as the training set, influences the statistical analysis and creation of the targeted inspection. 

However, cost and availability constraints can make it difficult to obtain well-characterized, statistically significant 

training populations of acceptable and unacceptable components. PCRT modeling can overcome these data-driven 

limitations by creating virtual databases of resonance spectra for training PCRT inspections. Prior work has 

demonstrated that virtual database training sets, created through finite element method (FEM) modeling, can be used 

to train PCRT inspections to detect and quantify creep strain in simple coupon geometries [6,7].  

This work designed and evaluated PCRT inspections for creep and crystal orientation defects from a virtual 

training database for a complex, representative aerospace turbine blade geometry made from single crystal (SX) 

nickel-based superalloy, Mar-M-247. Blade populations were modeled using a Monte Carlo (MC) sampling approach 

to include coupled effects from variations in geometric dimensions, material properties, crystallographic orientation, 

and creep damage. Model results were verified by comparing the frequency variation in the modeled populations with 

the measured frequency variations of several physical blade populations. Additionally, the creep modeling technique 

was verified through the comparison of an experimentally crept sample and modeled creep sample. Quantification of 

creep strain using PCRT statistical scoring was also evaluated.  

PCRT ANALYSIS METHODS 

To build a PCRT targeted defect detection inspection (also known as a PASS/FAIL Sorting Module), the 

resonance spectra from the training sets are analyzed using Vibrational Pattern Recognition (VIPR) algorithms. VIPR 

uses the Mahalanobis-Taguchi System [8] to score the diagnostic frequency pattern data and optimize which 

frequencies to use within the Sorting Module. The Mahalanobis Distance [9] calculates the similarity of a given part 

to the central tendency of the known acceptable (good) population or the similarity to the central tendency of the 

known unacceptable (bad) population (Bias). The Taguchi component optimizes the number of frequencies used for 

the calculation, focusing on the most diagnostic frequency patterns rather than using the full broadband spectra.  

Figure 1 shows an example of a VIPR plot for a PCRT Sorting Module. The MTS limit (x-axis) is the 

PASS/FAIL threshold for similarity to the good components (green dots). The Bias limit (y-axis) is the PASS/FAIL 

threshold for similarity to the bad components. Parts that fall below the MTS and Bias limits pass the PCRT inspection, 

and parts that exceed either limit (or both) fail. The PCRT system calculates MTS and Bias scores automatically, and 

returns a PASS/FAIL result that requires no operator interpretation.  

 

 

FIGURE 1. VIPR Sorting Module result plot 

 

A robust training set will produce a Sorting Module that is not confounded by nominal production variations 

while maintaining sensitivity to defects of interest. To create a robust training set, a statistically significant number of 

good and bad parts are needed. Ideally, the sets will include both the expected variations for the defects (size, 
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deformation amount, etc.) as well as variations inherent in production (i.e. machine tolerances, material lot variations, 

etc.).  

 

MODELING 

Using FE simulations, a series of forward models of a turbine blade were used to create a robust virtual 

training set of good and bad parts. The model dimensions were varied for each simulation by creating a parameterized 

model in SolidWorks [10] and importing each geometry into ANSYS Design Modeler [11]. The material was modeled 

as a nickel-based superalloy (Mar-M-247), in an anisotropic single crystal (SX) state [6,12]. A Block Lanczos Eigen 

solver [11] was used to obtain the resonant frequencies for each FE model.  

SX crystal orientation was modeled by rotating the local element coordinate system, defined using three 

angles ω, θ, and P (Fig. 2). Crystallographic alignment for each angle was varied to capture normal and unacceptable 

orientation variation. For instance, in the good population, the angle () between the (001) crystallographic axis and 

the long axis of the airfoil was varied  0-15° using a Weibull distribution representing tight casting control [13,14]. In 

the bad population,  varied 15-18° to simulate out of nominal casting defects.  

 

 

FIGURE 2. Blade model with crystal orientation defined  

 

 

Creep damage, the time-dependent inelastic deformation of blades, is a common failure mechanism found in 

turbine blades [15] and was chosen as a primary damage mechanism for this work. The rate of creep deformation is 

dependent on stress (load), temperature, and time [16]. Instead of a creep modeling approach, which is computationally 

expensive, a simplified plasticity model was used to model inelastic deformation in a blade. This was an acceptable 

approximation since both processes result in similar deformations and the residual plastic stress can be removed from 

the model before the modal analysis step. Previous modeling work has shown that the resulting shape change and 

frequency response effects from the simplified plasticity model gave similar deformation and frequency results as 

those from experimental creep tests [6,7,17]. First, the root volume of the blade was fixed and a body acceleration was 

applied to the full blade to simulate the centripetal acceleration the blade could experience in service. Transverse 

(perpendicular) loads from aerodynamic pressure on the airfoil were ignored. Second, the acceleration was adjusted 

to produce varying levels of nonlinear plastic strain as measured along the trailing edge of the blade. Finally, residual 

stresses were removed from the deformed geometry. 

The nonlinear plastic strain was determined through the Hill yield criterion [18] to define the transition from 

elastic to plastic behavior and a power law hardening rule to define how the yield criterion changes during plastic 

deformation. The effective yield stress, 𝑓, was defined as: 
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where the coefficients are defined as functions of the yield stress ratios (Rij) measured in six different directions [18]: 
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and  Rij are defined by the directional yield stress (𝜎𝑖𝑗): 
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For the anisotropic SX Mar-M-247, the directional yield stress ratios and coefficients were defined along the primary 

crystallographic orientation as: 
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based on modeling work preformed by Ramaglia et. al. [19]. A power law hardening equation was used to account for 

the change in yield stress with the buildup of plastic strain [18]. The power law equation defined the current yield 

stress 𝜎𝑦 as: 
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where G is the shear modulus, ε is the accumulated equivalent plastic strain, 𝜎0
𝑦
is the initial yield stress, and N is an 

experimentally determined exponent. Values of  𝜎0
𝑦
 and N were taken from modeled SX work done at the University 

of California Santa Barbara (UCSB) [17].  

The accuracy of the plasticity model was verified through the modeling and experimental creep of a Mar-M-247 
SX dog bone. The creep experiment was done at UCSB using the procedure described in Goodlet et al. [17]. The dog 

bone was iteratively crept to a total of 17.5% creep strain and removed at intervals to make PCRT measurements. 

These creep results were used to verify the accuracy of the plasticity model. The model showed excellent agreement 

of creep strain’s effects on resonance. Figure 3 compares the change in frequency from the undeformed state to 8.9% 

creep strain in the modeled and measured data. While a slight offset exists between the measured and modeled 

frequencies, the overall pattern was consistent because the measured and modeled resonance sensitivities were the 

same. The measured creep data include a global frequency shift of approximately +0.3% after the first creep increment, 

which was not anticipated by the models. A similar global increase in resonance was reported after the first creep 
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increment of polycrystalline Mar-M-247 dog bone by Goodlet et al., who postulate these observations may be due to 

changes in material microstructure or the residual stress state of the part [17].  

 

 

 

FIGURE 3. Frequency changes in crept physical and modeled dog bones 

 

 

In this study, the modeled training set included 150 nominal blades (good), 44 blades with creep damage 

(bad), and 13 blades with crystal orientation defects (bad). Both the good and bad training sets included combined 

variations in geometric and material properties. Table 1 lists the input parameters and ranges used in the generation 

of the training set. To create the training sets, a Monte Carlo (MC) sampling randomly selected combinations of the 

variables, within the ranges and distributions specified, to generate each model point. A series of one-factor-at-a-time 

(OFAT) studies were used to set the bounds for the distributions that the MC design points were drawn from. 

Parameter ranges were determined through a combination of expected machining tolerances, casting variations, and 

previous modeling and material analysis of SX dog bone populations [6, 20, 21]. Within each range, properties were 

given  normal distributions except for the crystal orientation parameters witch were given Weibull distributions.  

 
TABLE 1. Model input parameters and ranges used for modeled training set 

 Parameter Range for Good Parts Range for Bad Parts 

Geometric 

Parameter 

 Airfoil Thickness (Offset) + 0.01 cm + 0.01 cm 

 Airfoil Span + 0.0254 cm + 0.0254 cm 

 Core Thickness (Offset) + 0.01 cm + 0.01 cm 

 Core Shift +0.01cm (LETE)* +0.01cm (LETE)* 

 +0.01 cm ( PS)** +0.01 cm ( PS)** 

Material 

Paramter 
 Modulus  𝐸<001>  2% 2% 

 Poisson's Ratio  𝜈<001> 2% 2% 

 Anisotropy Ratio 2% 2% 

 Density 0.20% 0.20% 

Defect/Damage ω, θ , P Crystal Orientation 45+35°, 0°-15°, 0-45° 45+65°, 0°-17°, 0-90° 

Creep Strain 0 0-5% Strain 

*Leading Edge to Trailing Edge Direction  **Pressure to Suction Side Direction 

 

OFAT studies also examined how different frequencies exhibit different levels of sensitivity to various 

parameters. For example, Fig. 4 shows the frequency changes with model creep and model crystal orientation changes 

in a blade. While creep showed a decrease in frequency, different rotations (in the θ, P angles) can give different 
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resonance effects. Statistical analysis of these resonance pattern changes can assist in determining which parameters 

have changed.  

 

 

FIGURE 4. Frequency changes in blade models with crystal orientations (θ and P) and creep 

 

RESULTS 

MC Population Characteristics 

The forward modeling frequency results were imported into a virtual PCRT database for analysis. Figures 5-

7 show the spread of frequency variations for the first 20 resonance frequencies in the modeled good and bad parts. 

In these plots, the black line represents the median frequency change from the baseline/nominal model, for all the 

simulations. The blue band indicates the 0.25 to 0.75 percentile of the full range of variation. The dark green band 

shows the 0.10 to 0.90 percentile of the full range. Compared to the nominal population (Fig. 5), the creep population 

(Fig. 6), has shifted down in mean resonance frequency. This behavior was also observed for creep in dog bone 

geometries [7,17]. The blade crystal defect populations (Fig. 7), have an increased variance compared to the nominal 

and crept population.  
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FIGURE 5. MC Frequency distribution plot for nominal blade population. The black line represents the median frequency 

change, the blue indicates the 0.25 to 0.75 percentile of the full range of variation, the dark green band shows the 0.10 to 0.90 

percentile of the full range 

 

FIGURE 6. MC Frequency distribution plot for crept blade population. The black line represents the median frequency change, 

the blue indicates the 0.25 to 0.75 percentile of the full range of variation, the dark green band shows the 0.10 to 0.90 percentile 

of the full range 

 

 

FIGURE 7. MC Frequency distribution plot for crystal defect blade population. The black line represents the median frequency 

change, the blue indicates the 0.25 to 0.75 percentile of the full range of variation, the dark green band shows the 0.10 to 0.90 

percentile of the full range 
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The ranges of frequency variation predicted by the MC analysis were compared to populations of measured 

turbine blade PCRT data for verification. Figure 8 shows a comparison of normalized variance seen in multiple 

measured populations compared to the modeled good population used for the training set. In measured blade 

populations, a 0.5-1.5% frequency distribution was seen, depending on the blade. Overall, the modeled data spread 

was a good match to the measured data considering the different geometries examined. However, knowing what 

defines a “good match” when comparing measured to model data can be a complicated analysis. Several uncertainty 

quantifications and analysis studies attempt to answer this question on similar geometries [7, 12] and are currently 

underway for blade populations. 

 

FIGURE 8. Resonance deviation (%) of frequency in measured and modeled training sets (goods) 

Sorting Module Results 

The forward modeling results were imported into a virtual training set database for analysis using PCRT 

tools. Creation of virtual spectra (via superposition of Lorentzian distributions) for each simulation also allows for a 

visual comparison of the model data and identification of trends. Figure 9 shows an example of seven virtual spectra 

created by successively increasing creep strain on each blade simulation. As creep strain increases, frequencies more 

sensitive to creep strain, such as frequency 15, shift more than others (e.g. frequency16 and 17).  

 

FIGURE 9.Virtual resonance spectra for frequencies 15-17 of modeled turbine blades with increasing creep strain 

To create PCRT Sorting Modules that are most directly correlated to the defect severity, samples are assigned 

to various weighted bins, based on the degree of defectiveness. To build the targeted creep Sorting Module, the crept 

parts were separated into five bins based on severity of creep strain at 1-1.6%, 2.-2.6%, 3-3.7%, 4-4.9% and 5-5.7%, 

with a weight level on each bin of 1-5 respectively. VIPR examined the first 25 resonance frequencies and identified 

several diagnostic resonance frequency combinations to differentiate the good and bad parts. A creep Sorting Module 

was developed and each part was given an MTS and Bias score calculated from four frequencies (#2, 4, 18, 20). As 
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shown in Fig. 10a, all the nominal parts passed and all of the crept parts failed this inspection. Qualitatively, as creep 

strain increases, the MTS score increases. In addition to the PASS/FAIL nature of the inspection, this technique could 

lead to a quantitative evaluation of creep strain. Model validation and quantitative creep evaluations using MTS are 

ongoing.  

Similar to the creep populations, the crystal orientation defects were assigned to severity bins, and diagnostic 

patterns were optimized with VIPR from the first 25 resonance frequencies. Using four frequencies (#4, 5, 10, 19) a 

Sorting Module correctly sorted all the nominal parts from the crystal defect parts (Fig. 10b). Qualitatively, the various 

crystal orientation types appeared to cluster somewhat, due to their resonance similarities. For example, defects with 

high θ gave high MTS scores, meaning less similarity to the goods. However, the ω and P defects were “Bias fails” 

and score in the bottom right quadrant. Bias fail parts look like each other, however are less different from the goods 

(then the high θ parts, for instance). Increasing the number of modeled crystal defect parts may make these trends 

more obvious.  

  The modeled training set was based on a generic blade model geometry, so both Sorting Modules cannot be 

used in field testing for known physical parts. However, if the modeling study were to be repeated based on physical 

blade geometries, similar virtual trained Sorting Modules are expected.  

 

 
 

(a) (b) 

FIGURE 10. VIPR Sorting Module results for blade models (trained with virtual data) detecting (a) creep and (b) crystal defects 

CONCLUSIONS AND FUTURE WORK 

This work demonstrates that PCRT inspections can be created that are capable of distinguishing between 

creep damage and crystallographic misalignment from nominal parts in the presence of expected production variations 

using modeled SX turbine blades. Collecting a statically significant number of fully characterized parts for a PCRT 

training set is often not possible or economically feasible. To overcome this limitation, a model-assisted PCRT 

approach can use virtual good and bad parts to configure PASS/FAIL inspections. This work specifically examined 

turbine blade creep and SX crystallographic misalignment through an FEM approach. Creep modeling results were 

compared to experimentally crept dog bone samples with good agreement. Additionally, MC generated populations 

of the generic blade geometry were compared to measured data from several blade geometries currently in service, 

also with good agreement. 

Before a virtually trained Sorting Module can be used for field-testing, a larger scale validation process is 

needed. Future work will include 1) large-scale validation of the model accuracy in predicting resonance frequency 

change due to creep damage or crystal orientation defects, 2) characterization of the inspection performance of a 

virtually trained inspection compared to an inspection trained with physical parts, and 3) expanding forward modeling 

capabilities to accurately model the resonance frequency changes due to other types of damage/defects of interest. 

Work is currently ongoing to address these issues.  
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