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Abstract. Titanium alloys used by the aerospace industry, like Ti-64 or Ti-6242, with Microtexture Regions (MTR’s) have 
been shown to exhibit significantly reduced dwell fatigue lifetimes. Over the last several decades, these titanium alloys 
have been used for critical components such as turbine engine disks, which are then susceptible to failure well below their 
expected service life. Current Nondestructive Inspection (NDE) methods are time consuming and can miss MTR’s. Process 
Compensated Resonance Testing (PCRT) is a fast and accurate full-body NDE method that has been proposed for the 
detection of MTR’s in titanium turbine engine disks. PCRT excites a part’s resonance frequencies and correlates the 
resonance spectrum to the part’s material and/or damage state. Turbine engine disks with MTR’s will have different 
resonance spectra than fully isotropic disks. Both the MTR’s geometric parameters (i.e. size, location, and orientation) and 
the microstructural parameters (i.e. degree of crystal alignment and orientation) will influence the magnitude and pattern 
of changes in the resonance spectrum. Using a Monte-Carlo approach, this work developed Finite Element Method (FEM) 
model population of disks with and without MTR’s. These populations were analyzed to predict the effects of MTR 
parameter variation on resonance spectra and evaluate PCRT sensitivity to MTR’s in the presence of normal geometric and 
material property variation. The feasibility of detecting MTR’s in titanium turbine engine disks using PCRT methods is 
presented and discussed. 

INTRODUCTION 

Microtexture Regions (MTR’s) in α-β phase titanium alloys (e.g. Ti-6V-4Al, aka: Ti64) are discrete regions of 
aligned α-crystallites that are generally ~0.1-10mm in size but can be as large as 10’s of mm [1,2]. These clusters of 
aligned α-crystallites create localized regions of anisotropy in an otherwise isotropic material. The size, number, 
location, and degree of crystallite alignment (also called amount of microtexture) all influence the static and dynamic 
mechanical performance of a component. The presence of MTR’s in safety critical aircraft components (gas turbine 
engine disks especially) is a topic of interest because MTR’s can act as crack nucleation sites and significantly reduce 
dwell fatigue life. Several publications have explored the formation of MTR’s and the underlying mechanisms of 
crack initiation from MTR’s [1-10]. Based on these studies, the crystallite [0001] orientation most likely to result in a 
microcrack has been determined [1, 3]. Work is ongoing on the development of constitutive models that are capable 
of describing the role of processing (e.g. cooling rate, etc.) on MTR formation [8] as well as the role of microtexture 
parameters on the reduction of dwell fatigue lifetimes [9, 11]. One of the common methods for the detection of MTR’s 
is ultrasonic backscatter. This method is subject to noise issues and requires trained technicians, multiple scan angles, 
and significant scan times. A full body inspection method, such as resonance, could drastically reduce the time 
required for inspection. 



The presence of texture within a component will not only affect the static and dynamic mechanical performance 
but will also affect the component’s resonance spectrum. This is true for both macrotexture, which transforms an 
isotropic component into a non-isotropic one, and microtexture, which behaves like an inclusion. The degree to which 
the resonance signature is modified by the presence of texture depends on the amount of texture (the degree of 
crystallite alignment) as well as the crystal orientation of the texture. In the case of MTR’s, the sizes, locations, 
orientations, and numbers of MTR’s will also affect the resonance signature. The use of resonance methods for the 
detection of MTR’s has been proposed based on the known sensitivity of resonance methods to variance in the 
stiffness, discontinuities, and microstructure. 

Process Compensated Resonance Testing (PCRT) is an objective, full-body NDE method that combines Resonant 
Ultrasound Spectroscopy (RUS) measurements with advanced statistical analyses to produce an automated Pass/Fail 
scan. More traditional RUS measurements can often miss damage/defects due to the masking effect of the material 
and geometric variations present within a population of components. PCRT was developed to overcome that limitation 
while maintaining comparable scan speeds (often less than 30 seconds for an entire part). Over the past two decades, 
PCRT has been shown to be capable of detecting a wide range of defects and damage [12, 13], has seen many 
commercial applications, specifically gas turbine engine hardware [14, 15], and has become a standard NDE method 
[16-18]. Recent developments in PCRT have focused on forward and inverse modeling of defects and material states 
as well as model trained PCRT Sorting Modules [19-24]. 

This paper presents the methodology to create FEM models of realistic MTR’s in generic gas turbine engine disks 
as well as the capabilities of PCRT analyses in sorting components with MTR volumes from those without. The 
purpose of this work was to determine the sensitivity of resonance to the presence of realistic MTR volumes and 
examine the detectability of components with MTR’s when the MTR signature was partially masked by benign 
material and geometry variations. Modeled populations were generated using Monte-Carlo style sampling, 
representative disk geometries, and realistic MTR parameters. The modeled resonance frequencies were then analyzed 
using pattern recognition and machine learning to determine a combination of resonances modes that were most 
indicative of MTR volumes. This work demonstrates the feasibility of detecting MTR’s in populations of gas turbine 
engines disks using PCRT and lays down the groundwork for continued efforts in this vein. 

MTR CHARACTERIZATION 

The shape of an MTR is generally characterized as a prolate spheroid or a three-axis ellipsoid [25] as shown in 
FIGURE 1a. When describing the geometry and location of an MTR, it is useful to assign a local Cartesian coordinate 
system, (êMTR1, êMTR2, êMTR3). The coordinate system is aligned to the primary, secondary, and tertiary axes of the 
ellipsoid. An MTR’s position within the disk model refers to the MTR centroid and is given based on the disk centric 
cylindrical coordinate system, (êR, êθ, êZ), as shown in Fig. 1b. The orientation of the MTR is given with respect to 
the disk coordinate system and is described using a series of Euler rotations, (ϕ1, ϕ2, ϕ3), as shown in Fig. 1c. Generally, 
the primary MTR axis is roughly aligned with the disk radial unit vector, êR, due to the forging process [25]. There is 
some amount of rotation about the transverse-horizontal and transverse-vertical directions, êθ and êZ, but this requires 
further characterization.  

 
 

 

(a) (b) (c) 

FIGURE 1. MTR diagrams showing (a) the triaxial ellipsoid geometry with MTR centric coordinate system, (b) location of 
MTR centroid in disk coordinates, and (c) orientation of the MTR with respect to the disk coordinate system. 

 
The MTR model parameters used in this work were extracted from measured data in the form of Electron 

Backscatter Diffraction (EBSD) scans of titanium samples, henceforth referred to as “the Pilchak dataset” [1,2]. This 



dataset includes four separate samples and images three orthogonal planes from each sample. Pilchak et al. (2016) 
processed the raw EBSD data to extract the parameters of the MTR’s present in each sample. They used the open 
source Dream.3D program (BlueQuartz Software, Springboro, Ohio) along with a two-step improved burn algorithm. 
The extracted properties include: major (primary) axis length, minor (secondary) axis length, equivalent diameter, and 
inclination angle. As processed, the Pilchak dataset only provides information on the geometry and orientation of the 
MTR volumes. Both the ellipsoidal primary axis length and the primary to secondary aspect ratio parameters exhibit 
Weibull distributions as shown in Fig. 2. The inclination angle of the MTR’s can give a general idea of the MTR 
orientation with respect to the forging direction but cannot provide the complete 3D orientation. MTR parameter 
probability density function (PDF’s) were extracted from the Pilchak dataset by fitting three-parameter Weibull 
distribution functions to the axis length parameters and two-parameter Gaussian distribution to the inclination angle. 

Variations in the forging and fabrication methodologies of titanium components can have a significant effect on 
the formation and characteristics of MTR volumes within the component. Pilchak et al. (2016) in particular have 
demonstrated that once an MTR is formed in a billet subsequent plastic deformation changes the geometry of the MTR 
volume, but not the texture [1, 2]. Thus, even though the Pilchak dataset is the most complete MTR characterization 
study to date, the MTR parameter PDF’s used in this study are not necessarily representative of the MTR occurrence 
in a specific component or particular type of components. 

 

  
(a) (b) 

FIGURE 2. Weibull distributions fit to the MTR dataset provided by Pilchak et al (2016) [1, 2] showing the (a) major axis length 
and (b) aspect ratio between the primary and secondary axis lengths. 

 
As with any polycrystalline metallic sample, the material properties of an MTR are the Voight-Reuss (V-R) 

average of the individual phases and crystallites with respect to a given coordinate system. Unlike isotropic 
polycrystalline materials, in which the crystallites are randomly oriented, an MTR has aligned crystallites. As the 
similarity of the crystallite alignment increases the isotropy of the MTR decreases and the region behaves more and 
more like a single crystal. Yang & Turner (2007) [26] and Yang et al. (2012) [27] have proposed a microtexture 
parameter (based on the degree of misalignment of the α-crystallites) that can be used to quickly determine the V-R 
averaged elastic stiffness tensor of an MTR. Thus, the elastic properties of an MTR can readily be modeled from the 
crystallite orientation as measured from EBSD.  

The primary focus of previous MTR studies has been on determining the underlying mechanism of the premature 
failure of titanium components. Little work has been done to characterize the MTR’s themselves, especially in 
populations of components. There are several open questions that are limiting factors for this model-based study for 
MTR detection. What is lacking is better characterization, a good understanding of the statistical occurrence of MTR 
volumes in a given population of components, and a good understanding of the combination of MTR parameters that 
is most likely to lead to premature failure (severity metric). 

MODELING 

Disk Geometries 

Two different aircraft gas turbine engine disk geometries were modeled and analyzed using the FEM software 
ANSYS 18.2 (ANSYS, Inc., Canonsburg, PA): a fan disk and a turbine disk. Fan disks are commonly made from a 
titanium alloy and are susceptible to the formation of MTR’s. Turbine disks, on the other hand, are commonly made  
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FIGURE 3. Turbine engine disk models used in this study showing (a) the generic turbine disk and (b) the 
generic fan disk. 

 
from a nickel-based superalloy. A turbine disk geometry was included in this study to provide a different, thicker 
geometry for the evaluation of the sensitivity of resonance to the presence of MTR’s. The fan disk geometry was a 
defeatured CAD model created based on measurements of a fan disk provided by AFRL. The turbine disk geometry 
came from an open-source CAD modeling archive [28] and was modified to make it more realistic. Changes were 
made based on measurements of various in-house turbine disks and include: the number of fir-tree slots, the bore-to-
web thickness, and bore-to-edge thickness ratio. Fig. 3 shows the final geometries used in this study. 

The mesh parameters for each model were selected to optimize computational resources, maintain feature fidelity, 
and give the most reasonable MTR resolution. To this end, the generic turbine disk was meshed entirely with 10-node 
tetrahedral elements, which had quadratic displacement behavior and approximate edge length of 5 mm, yielding a 
total of 480880 elements with 806123 nodes. The generic fan disk was divided into three mesh sections, the web, the 
flanges, and the bore & dovetails. A 20-node hex dominant mesh with edge length of 2.5mm was applied to the web 
section. The flanges were meshed with 8-node quadrilateral shell elements while the bore & dovetail sections were 
meshed with 10-node tetrahedral elements both of which had approximate edge lengths of 10mm. A total of 343,090 
elements with 866,854 nodes were used for the generic fan disk geometry. For this model, MTR’s were limited to the 
main disk and focused on the web section since they are unlikely to form in the flanges due to processing [25]. 

Microtexture Regions  

MTR volumes for each model were generated by a script. The script inputs included: 1) part geometry, 2) MTR 
geometries, 3) ranges for MTR properties, 4) desired number or volume fraction of MTR’s, and 5) penetration 
tolerances. MTR’s were iteratively generated by randomly sampling the geometry and property distributions until a 
target MTR quantity or volume fraction was met. Penetration tolerance controlled whether the MTR’s could penetrate 
the part surface and other MTR’s during the generation process. The MTR geometry distributions were specified by 
the PDF’s extracted from the Pilchak dataset [1, 2] discussed previously. MTR locations were random in the allowed 
sections while enforcing the penetration conditions. MTR orientations were generated via the likely alignment of the 
primary MTR axis with the radial unit vector (as specified by Pilchak [1, 2, 25]) with angular perturbations about the 
transverse-horizontal and transverse-vertical axes. The models used in this study employed normal distributions to 
account for these angular perturbations. Rotations were limited to ± 45° and ± 15° about the transverse-horizontal and 
transverse-vertical directions respectively. 

Due to the drastic size differences between disks and the α-crystallite, the model elements were significantly larger 
than the crystallites. Therefore, for efficient use of computational resources, effective (or V-R average) elastic 
properties were assigned to the elements. The elements inside an MTR represent a cluster of partially to fully aligned 
α-crystallites, and as such, their effective elastic constants must be determined and applied. Elastic constants for each  



 
 

(a) (b) 

FIGURE 4. Diagram of the method for assigning elastic properties to the interior elements of a modeled MTR showing (a) the 
general trend of the texture parameter with MTR radius and (b) a graphical depiction of the texture parameter (σ). 

 
MTR were calculated based on their microtexture parameter, as discussed previously. This work used the single crystal 
elastic stiffness constants from Simmons & Wang (1971) [29] in combination with the texture parameter given by 
Yang et al. (2012) [27] to calculate the elastic stiffness tensor. 

MTR’s are not discrete regions of constant texture, however; the most appropriate texture distribution model for 
the interior of an MTR is still an open question. In this project, the MTR was modeled as a textured region with a 
diffuse boundary. To account for this, the microtexture parameter was varied as a function of the MTR radial 
component, σ(R), such that the center of the MTR had the value σ0, which is anisotropic, and the boundary of the 
MTR had σ ≥ 1, which is isotropic. Each element within an MTR boundary was assigned a σ value with corresponding 
elastic constants based on the location of its centroid. Fig. 4 provides an illustration of assigning the σ values to the 
elements within an MTR. In this figure, red is the most anisotropic, blue the least, and grey is isotropic. 

The α-crystallites that comprise an MTR are at least partially aligned to a Voight-Reuss averaged [0001]VR 
direction. The amount of misalignment from [0001]VR is described by the microtexture parameter, so the elemental 
coordinate system for each element within an MTR should have the same orientation. Alignment of the microtextured 
elastic stiffness tensor with the averaged crystallite coordinate system was accomplished by rotating the elemental 
coordinate systems. Note that the [0001]VR vector of an MTR is not necessarily coincident with the unit vector of the 
MTR primary ellipsoidal axis, or the other axes. 

To create a modeled disk with realistic MTR volumes, the MTR volumes were generated and then placed into the 
existing mesh of the disk model. Modifying the existing mesh prevented the modification of the mesh structure and 
thus the epistemic modeling error due to mesh variations. This approach to generating MTR’s within a disk volume 
allowed for the presence of a random number of MTR’s with realistically random placements, geometries, and 
orientations. 

The current method of inserting MTR volumes into a disk geometry was selected after considering the limitations 
of other approaches. There is a threshold on the number of nodes a model can have before the computational cost 
becomes impractical. Thus, with the method used in this study, the element size was the minimum MTR size that 
could be modeled. Smaller MTR volumes could be modeled at the expense of the freedom to place the MTR’s 
randomly within the volume of the disk. If smaller MTR’s were inserted at random locations, then the required local 
mesh refinement would increase the epistemic error. Alternatively, the MTR locations, geometries, and orientations 
could be kept consistent to eliminate the mesh variation, but then only the microtexture parameter and crystal 
orientation could be changed. 

Monte-Carlo Design Space 

Using the generic disk geometries and the MTR modeling method, Monte-Carlo (MC) design spaces were created 
to study the sensitivity of resonance frequencies to the presence of MTR’s. This modeling procedure is described 
elsewhere [20, 21, 23]. Table 1 provides a summary of the parameters that were used in the creation of the MC space. 
The MC space for each geometry produced two distinct populations, nominal and MTR. The nominal population 
comprised components with acceptable processing variation only. In these models the processing variation included 
material properties (E, ν, and ρ) and the geometry (web thickness, slot width, bore hole diameter, bore hole position, 
bolt hole diameter, and bolt hole position), which were based on measurement uncertainty and machining tolerances 
respectively. The MTR population consisted of components that contained MTR volumes in addition to the processing 
variations. MTR parameters included location, number/volume fraction, geometry, MTR orientation, crystal 
orientation, and amount of texture. The realistic representation of MTR’s included allowing randomized locations, 



TABLE 1. Parameters, values, and ranges used in the Monte-Carlo studies of generic Ti64 turbine engine disks with 
realistic MTR’s. 

Param 
Type Parameter Nominal Min Max Model Sampling & 

Distribution 
M

at
er

ia
l E (GPa) 116.37 98.00% 102.00% TD/FD R-N 

ν 0.3192 98.00% 102.00% TD/FD R-N 

ρ (kg/m^3) 4620 99.80% 100.20% TD/FD R-N 

G
eo

m
et

ry
 

Web Thickness Variation (cm) 0 -0.00508 0.00508 TD/FD R-N 

Slot Width (mm) 3.3 3.29 3.31 TD R-N 

Bore Hole Diameter (cm) 7 6.9975 7.0305 TD/FD R-SN 

Bore Hole Offset X (cm) 0 -0.013 0.013 TD/FD R-N 

Bore Hole Offset Y (cm) 0 -0.013 0.013 TD/FD R-N 

Bolt Hole Diameter (cm) 2 1.9975 2.0254 TD R-SN 

Bolt Hole Offset R (cm) 0 -0.013 0.013 TD R-N 

M
T

R
 

Location (R, Θ, Z) -- -- -- TD/FD R-E 

Volume Fraction -- 0.50% 2.00% TD/FD E-4 Bins 

Major Axis (mm) 5 5 60 TD/FD R-W 

Aspect Ratio 1 1 10 TD/FD R-W 

Microtexture Parameter σ -- 1 0.0001 TD/FD R-E 

MTR Orientation 
(φ1, φ2, φ3) (deg) -- 0 90 TD/FD R-E 

Crystal Orientation ω (deg) 0 -45 45 TD/FD R-N 

Crystal Orientation θ (deg) 45 0 90 TD/FD R-N 

Crystal Orientation Ρ (deg) 0 -45 45 TD/FD R-N 
TD – Generic turbine disk geometry 
FD – Generic fan disk geometry 

R – Random sampling 
N – Normal distribution 

E – Even sampling or distribution  
SN – Skew-normal distribution 

W – Weibull distribution 

 
randomized sizes, and random numbers of individual MTR’s. The volume fraction of MTR’s ranged between 0.5% 
and 2%, and MTR volumes were constrained to a minimum distance of 5mm from other MTR’s and disk surfaces. 

The MC parameters were used to generate 100 nominal and 50 MTR components for the generic turbine while the 
generic fan disk had 100 nominal and 59 MTR components. Since the generation of realistic MTR’s was the intention 
of this study, this MC space did not prevent MTR’s with near-isotropic properties (σ>0.5) or control the number of 
MTR’s. MTR’s with near-isotropic properties are very similar to the surrounding medium and were expected to be 
more difficult to detect. The potential design space was quite large due to the lack of information available in literature 
about the probability and structural impact of different MTR configurations. Additional knowledge about what is 
likely to occur and what is a performance risk can help constrain the design space and more effectively evaluate PCRT 
sensitivity. In this study the random parameter combination approach was considered the optimal modeling method 
with the available information. 

ANALYSIS 

Once the resonance frequencies were determined via modal analysis for each of the MC design points, the 
resonance responses to parameter variations were analyzed to identify resonance modes that were diagnostic of the 
presence of MTR’s. FIGURE 5 shows a summary of the resonance frequencies from the MC spaces for the generic 
disk geometries and realistic MTR’s. FIGURE 5 plots the mode dependent frequency averages (data points) and 
standard deviations (error bars) for the nominal (green) population and the MTR (orange) population. The maximum  



  
(a) (b) 

FIGURE 5. Resonance frequency variation of the Monte-Carlo populations from baseline for (a) the generic turbine disk and (b) 
the generic fan disk. Error bars represent 1 standard deviation of the population. 

 
frequency difference due to the presence of MTR’s is also plotted. All quantities were normalized to the average of 
the nominal population for each mode. With this type of plot, the relative influence of defect/damage on the resonance 
frequencies can be determined with respect to the influence of the expected process variations present in a given 
population. Little to no overlap of the nominal and defective populations for three or more modes indicates that the 
defective parts can be sorted with a basic outlier screening. Some to significant overlap of the two populations requires 
a more complex approach, namely the application of the Vibrational Pattern Recognition (VIPR) algorithm described 
below. 

In the case of both MC spaces, there was some overlap of the nominal and MTR populations, but the average of 
the MTR population was distinct from the nominal population and was slightly higher than the standard deviation of 
the nominal population. This indicated that the components with MTR’s were likely detectable with a targeted sorting 
solution. Also noteworthy was the variation in the sensitivity of the resonance modes. For the generic turbine disk 
geometry (Fig. 5a) all of the modes seemed to be similarly sensitive to the presence of MTR’s. The resonance modes 
of the generic fan disk, on the other hand, exhibited significant variance in sensitivity. This was due to the three 
sections of the fan disk (web, fore flange, and aft flange) vibrating individually. The least sensitive modes were those 
in which the flanges were vibrating while the most sensitive modes were those in which the web is the primary 
resonator, which is likely due to constraining the MTR’s to the web section. 

VIPR (Vibrant Corp. Albuquerque, USA) is a proprietary pattern recognition algorithm that was developed to 
target specific defects and determine the combination of resonance frequencies that is most diagnostic for the targeted 
condition and is now a standard analysis method [17, 18]. As with other machine learning applications, training sets 
(both nominal and defective) must be provided so that the algorithm can learn which resonance patterns are diagnostic. 
VIPR sorts nominal parts from defective parts using the Mahalanobis-Taguchi System (MTS) [30, 31] and bias 
discriminator. MTS is the magnitude of the difference vector between a given part and the central tendency of the 
nominal population. The bias discriminator is an n-dimensional surface separating the classifications (good/bad) when 
the population clouds are indistinct. A typical VIPR solution provides a scatter plot of x-y ordered pairs (Bias, MTS) 
for each part. Based on this approach, passing parts will have negative values in both Bias and MTS (quadrant III) 
while failing parts will have a positive value in the Bias, MTS, or both. 

RESULTS AND DISCUSSION 

VIPR algorithms were applied to the output frequencies MC populations for the generic gas turbine disk geometries 
to target parts with MTR’s. The goal was to generate an objective Pass/Fail PCRT Sorting Module by identifying the 
optimal combination of resonance peaks that were most diagnostic of MTR’s in a component. To this end, VIPR was 
trained to pass the components without MTR’s (acceptable parts) while failing components with MTR’s (unacceptable 
parts). In the training sets, the acceptable groups comprised components with nominal geometrical and material 
variations only. The unacceptable groups in the training sets comprised components with modeled  



TABLE 2. Summary of targeted MTR sorts for generic disk geometries. 

Model Geometry Number of Parts in Training Set Number of 
VIPR Peaks 

Good Part 
Pass Rate MTR Fail Rate Good Parts MTR Parts 

Turbine Disk 100 50 7 97/100 44/50 
Fan Disk 100 59 7 94/100 58/59 

 
MTR’s in addition to the geometrical and material variations present in the acceptable group. A summary of the VIPR 
sort for the two geometries is provided in Table 2. 

The results of the VIPR sorts for the generic turbine disk and fan disk geometries are given in Fig. 6a and Fig. 6b 
respectively. In these plots, the parts in the bottom-left quadrant passed the sort and parts in the other three quadrants 
failed the sort either by MTS, Bias, or both. As described previously, the components with MTR’s had a random 
number of MTR volumes (between 1 and 60) and each of these volumes had random locations, sizes, and properties. 
No correlative relationships were found between any single MTR parameter and the VIPR failure metrics, however, 
there was a common factor amongst the unacceptable parts that passed. These parts contained MTR volumes (either 
a single large volume or multiple small volumes) with low texture (σ > 0.5). This means that these MTR’s were nearly 
isotropic and would have been nearly indistinguishable from the surrounding bulk material. The minimal discontinuity 
between these low texture MTR’s and the bulk material would also imply a lower risk for crack nucleation and 
propagation, but additional research into severity metrics would be required to confirm this. The nominal parts that 
fail tend to have all of their parameters towards the higher ends of the distributions (Table 1). 

Analysis of the generic turbine disk database yielded a seven-peak VIPR sorting solution targeting disks with 
MTR’s. Based on the seven diagnostic resonance modes, 97% of the acceptable parts (nominal parameters) passed 
and 88% of components with MTR’s failed this sort (shown graphically in Fig. 6a). A more conservative sort can be 
constructed that will fail all the components with MTR’s at the expense of a higher fallout rate of the acceptable parts. 
Cross-validation of the current solution demonstrated that this sorting solution was robust, meaning any additional 
parts with moderate to high texture MTR’s would have a high likelihood of detection. Analysis of the generic fan disk 
model database yielded similar results to the turbine disk. Seven resonance modes were identified by the VIPR analysis 
as the most diagnostic. Based on these diagnostic modes, 94% of acceptable parts (nominal parameters) passed the 
sort while 98% of the components with MTR’s failed (shown in Fig. 6b). This sort had a higher MTR detection rate 
at the expense of a higher acceptable part fallout rate when compared to the turbine disk sort. 

Although the targeted defect analysis of these two geometries proved successful, these were generic geometries. 
That, combined with the low availability of gas turbine disks and the difficulty in detecting MTR’s, means that these 
sorts could not be subjected to field testing. This does, however, serve as a proof of concept for future work into the 
detection of MTR’s in titanium components using PCRT methods. Note that a PCRT scan of the diagnostic peaks 
would take less than 30 seconds whereas an ultrasonic scan would take more than several hours. 

 

  
(a) (b) 

FIGURE 6. VIPR solutions for targeting MTR’s in generic modeled disk geometries for (a) turbine disk and (b) fan disk. Passing 
parts will have negative values in both Bias and MTS while failing parts will have a positive value in the Bias, MTS, or both. 

 



CONCLUSIONS AND FUTURE WORK 

This work demonstrates that a PCRT targeted defect sort is able to distinguish between modeled components with 
and without MTR volumes in the presence of expected process variations. The two VIPR sorts correctly sorted 95% 
of the components examined where ~44% of all missorted parts contained near-isotropic MTR’s. Thus, the fast, 
objective, and automated detection of MTR’s is feasible with PCRT methods. 

The targeted PCRT sorting analyses presented here were performed on populations of modeled components 
generated using two generic disk geometries, Monte-Carlo style sampling, and realistic MTR’s. FEM approximations 
of real MTR’s were developed based on a publicly available dataset of MTR characteristics by randomly sampling 
the various MTR parameters. Statistically significant populations of components, with and without MTR volumes, 
were then generated and used to train a Pass/Fail defect sort targeting the MTR volumes. 

One of the impediments to this work specifically and the field of MTR NDE generally was the lack of available 
literature regarding the characteristics of MTR’s and their statistical occurrences in titanium aircraft components. The 
MTR models in this study are based off of a single dataset. Variations in the forging and forming processes will change 
the size, shape, orientation, and distribution of MTR’s in a component. Another hindrance was the lack of a defined 
relationship between MTR parameters and the likelihood of crack initiation before the expected service life. The 
genetic algorithm employed by VIPR utilizes such severity metrics to optimize the detection of life-limiting features. 

Verification of the models presented here is currently underway using real geometries with characterized MTR’s. 
Future work includes utilizing model-based PCRT sorting solutions to detect MTR volumes in a population of real 
titanium gas turbine engine components. Topics for additional investigations include the development of an MTR 
severity metric and additional MTR characterization. 
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