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A B S T R A C T

Process compensated resonant testing (PCRT) is a
full body nondestructive evaluation (NDE) method
that measures the resonance frequencies of a part
and correlates them to the part’s material state,
structural integrity, or damage state. This paper
describes the quantification of creep damage in a
virtual part population via the correlation of PCRT
parameters to creep strain using inversion
methods and vibrational pattern recognition (VIPR)
analysis. Modeled populations were created using
the finite element method (FEM) for single crystal
(SX) nickel-based superalloy dogbone and turbine
engine airfoil geometries. The modeled popula-
tions include nominal variation in crystallographic
orientation, geometric dimensions, and material
properties. Modeled populations also include parts
with variable levels of creep strain, allowing for
NDE sensitivity studies. FEM model inversion tools
quantified creep strain and distinguished it from
other variations in the part populations. Resonant
modes that were found to be particularly sensitive to
creep strain were evaluated using VIPR algorithms to

correlate and quantify creep strain with PCRT
metrics. The results for PCRT forward models,
model inversion, and VIPR correlations were
verified with experimental creep strain measure-
ments made for dogbone specimens. This verifica-
tion demonstrated that PCRT inspections can be
trained through forward models to detect and
quantify creep damage in a part.
KEYWORDS: creep, PCRT, resonance, forward
modeling, inversion, NDE, nickel-based superalloy.

Introduction

Process compensated resonant testing is a full body nonde-
structive evaluation method that uses multiple resonance
frequencies of a part to evaluate its structural integrity and
material states (ASTM, 2016). PCRT combines resonant
ultrasound spectroscopy (RUS) (Migliori et al., 1993),
pattern recognition analysis, and statistical scoring of
frequency data to perform pass/fail (P/F) NDE, process
monitoring, life monitoring, and material characterization for
commercial and scientific applications (Schwarz et al., 2005).
One of the most critical applications is the evaluation of gas
turbine engine airfoils made from nickel-based superalloys
(Piotrowski et al., 2008). Prior work on nickel-based super-
alloy gas turbine airfoils has shown PCRT capable of meas-
uring shifts in resonance frequency peaks which are correlated
with high temperature exposure (Piotrowski et al., 2008; FAA,
2010). Additionally, the NDE potential gained from coupling
forward finite element method (FEM) models of incremen-
tally crept dogbones to the PCRT measured changes in reso-
nance resulting from creep strain was explored for
polycrystalline nickel-based superalloy dogbones (Goodlet 
et al., 2017; Biedermann et al., 2016).
PCRT applications use a training set consisting of compo-

nents that represent the range of acceptable process varia-
tion—one or more defective conditions—as well as the range
of severity in those defective conditions. The VIPR algorithms
use this training set to identify the most diagnostic resonances
for the condition(s) of interest (Jauriqui, 2010). VIPR readily
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identifies parts with resonance differences due to a defect,
however, it has not frequently been used to characterize or
quantify defects. Additionally, a significant number of targeted
defective samples are often hard to obtain from a service
population or are too costly to create experimentally. Forward
modeling in PCRT has the potential to greatly increase the
method’s material characterization capability while reducing
the need for large training populations of physical samples
(Biedermann et al., 2016).
PCRT inversion tools have been expanded to use the

mechanical resonances of a part to simultaneously estimate
varying material properties and changes in part geometry. 
The capability of performing inversion using surrogate
models from FEM simulations has also been developed,
addressing crystal orientation and complex geometries
(Biedermann et al., 2016). Work continues towards the goal
of using inversion tools to identify the type and severity of
damage, on a path toward identifying structural deficiencies
with greater confidence. Further development of these NDE
tools holds the promise of reduced risk of in-service compo-
nent failure, and extension of serviceable component lifetimes
due to reduced uncertainty in life estimates.
This work explores the quantification of creep damage in a

virtual part population via the correlation of PCRT parame-
ters to creep strain using inversion methods and VIPR
analysis. FEM modeled design spaces of single crystal (SX)
nickel-based superalloy samples for dogbone and turbine
blade geometries were created. Design spaces included
models with nominal levels of variation in crystallographic
orientation, geometric dimensions, and material properties.
The design spaces also included models with excessive plastic
deformation to simulate creep strain. FEM inversion tools are
then demonstrated to successfully quantify creep strain from
natural parameter variations in the modeled part population.
With diagnostic modes found to be sensitive to creep strain
using VIPR algorithms, quantification of creep strain is also
demonstrated using traditional PCRT metrics. Finally, inver-
sion methods were verified with experimental data collected
from a SX dogbone crept incrementally. This work demon-
strates that FEM inversion and VIPR algorithms can be
trained through PCRT forward models to invert the quantity
of creep damage in a part.

Methods

Finite-Element Method Forward Modeling of Creep
A series of populations were created using FEM software for
SX superalloy dogbones and turbine blade geometries for the
purpose of developing virtual training sets of acceptable and
nonacceptable parts accounting for expected population vari-
ances of geometric, material, and defect creep elongation
parameters. Forward models were generated through FEM.
Modeling the shape change associated with creep was accom-
plished with a nonlinear plastic analysis, which is generally

more straightforward than a full creep plasticity analysis and
should yield very similar deformation characteristics. Defor-
mation of SX material required an anisotropic (cubic)
elastic/plastic material model using a Hill stress potential
function as detailed by other scholarship (Ramaglia and
Villari, 2013; Biedermann et al., 2017). After each creep strain
interval was modeled, the deformed shape was imported into
an FEM modal analysis, using a block lanczos eigensolver, to
predict the change in resonance frequencies resulting from
creep strain accumulation.
Forward model parameters of the 10 mm gage length SX

dogbone have been previously reported (Biedermann et al.,
2015), including dimensional variation in gage length, elastic
properties, crystallographic orientation, and accumulated
creep strain. To create a PCRT forward model sensitivity
study of creep for a more complex geometry, a 54 mm long
turbine blade with an internal cooling passage was also repre-
sented using models (Grabcad, 2016). Figure 1 shows the
dogbone and blade models. In the blade geometry the root
volume was fixed and a body force was applied to simulate the
boundary conditions and centripetal loads the blade could
experience in service. The angle (q) between the (001) crys-
tallographic axis (Z’) and the long axis of the airfoil (Z) was
varied to capture normal variation and potential casting
defects in grain orientation. To simulate the deformed
geometry associated with creep, the load applied to the airfoil
was adjusted to produce varying levels of nonlinear plastic
strain as measured along the trailing edge of the blade.
A series of one-factor-at-a-time (OFAT) studies varied

each geometric, material, and creep parameter individually to
evaluate its effect on resonance variation and establish a
normal distribution of parameters within the ranges specified.
Next, monte carlo (MC) simulations randomly selected
parameter values from within the specified ranges and gener-
ated FEM models to simulate the frequency profiles produced
by the monte carlo parameterization. Then, a selection of
normal design points were modeled with varying amounts of
creep strain. Table 1 describes the parameters and their
ranges chosen for the single crystal blade monte carlo design
spaces.
Previous results have quantified the overall uncertainty in

resonance frequencies resulting from coupled variation in
geometry, material properties, crystallographic orientation,
and creep damage for nickel-based superalloys (Biedermann
et al., 2017). For instance, error can be introduced with inac-
curate mode shape tracking. Each resonance mode has both a
characteristic frequency and mode shape, or pattern, in which
the part oscillates as it resonates. For inversion interpolations
to produce meaningful results, proper mode alignment
between the two FEM model runs is essential. However, this
process is complicated by the fact that changes in any param-
eter value can affect the ordering in which resonance modes
appear in the frequency regime. This mode-swapping requires
a robust mode shape based tracking and matching of modes.
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Figure 1. Diagrams: (a) dogbone geometry; and (b) and blade geometry. For each geometry, angle (q) is defined between the (001)
crystallographic axis (Z’) and the long axis of the dogbone or airfoil (Z). 
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TABLE 1
Coupled parameters for the SX blade forward model Monte Carlo design space studies*

Parameter description Parameter range
Normal population: geometry Airfoil thickness diameter ±0.02%

Airfoil span ±0.04%
Leading edge inflation/deflation ±0.01%
Trailing edge inflation/deflation ±0.01%
Core thickness diameter ±0.04%
Twist/untwist of airfoil ±2.6°
Core shift ±0.1% leading edge to trailing edge,

±0.1% pressure to suction side
Normal population: material Poisson ratio along crystal (001), (ν(001)) ±2%

Young’s modulus along crystal (001), (E(001)) ±2%
Anisotropy ratio, (A) ±3%
Density ±0.2%
Angle of (001) crystal axis rotation, (θ) ±15°

Defect population: geometry Same as normal population Ranges listed above
Defect population: material Added creep strain, as measured along trailing edge 0.5 –10%

* Geometric ranges represent estimates of acceptable design tolerance.
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Mitigating mode matching error can be very difficult and
often involves direct comparison of all the mode shapes in a
design space. Fortunately, while resonance frequencies vary
significantly within the possible parameter space, resonance
mode shapes are much more consistent. Therefore, resonance
modes for each simulation were matched according to a series
of modal assurance criterion correlations, described in detail
in other work (Pastor et al., 2012).

FEM Inversion Method for Creep
Historically, inversion has been used to estimate bulk material
properties of parts with simple geometries (Migliori et al.,
1993; Migliori and Sarrao, 1997). In order to estimate more
complex material states and geometries, such as creep in a
coupon or turbine blade, an FEM model-based inversion
approach was chosen.
The purpose of inversion is to estimate a set of parameters

describing a part, such as creep strain, from a measured set of
the part’s resonant frequencies. This is achieved using an iter-
ative solving method, shown in Figure 2, wherein the user
gives the measured frequencies and an initial guess of the
parameters to an optimization routine. The optimization
routine then passes the guessed parameters to a model, which
outputs what the corresponding resonant frequencies should
be. The modeled frequencies are compared to the measured
sample frequencies and the optimization routine adjusts its
parameter estimates based on the resultant error. This process

is repeated until the resonance mode shape error is below a
convergence threshold, at which point the current parameteri-
zation is returned as the best fit parameters.
The inversion process often requires many iterations to

converge to a solution, and running a full FEM model run at
each iteration could require hours, or even days, to complete a
single inversion analysis. One way to decrease inversion time
is to simulate a series of design points that spans the bounds
of the parameters of interest and then create a metamodel that
quickly interpolates between the generated frequencies.
The metamodeling approach described here is a gridded

design space. It involves creating an N-dimensional evenly
spaced grid of FEM design points and employing cubic spline
interpolation for estimations between design points. Gridded
design spaces offer good frequency estimates that increase in
accuracy with resolution of the design space. However, they
also require an exponential increase in the minimum number
of design points generated with each additional inversion param-
eter, as well as significant increases in interpolation time. This
makes gridded design spaces well suited for inversion problems
with four or fewer parameters, while greater payoffs come from
numerous inversion runs. Ultimately, the decision between
conducting inversions from interpolated gridded design space
data or performing FEM calculations on the fly must consider
the likely number of inversion runs, the number of invertible
parameters, the range of possible parameter values, and the
desired resolution of each parameter being estimated.
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Figure 2. Flow diagram of the resonant ultrasound spectroscopy inversion process.
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The inversion toolset used a gridded design space gener-
ated from forward models of dogbones that varied five
material properties: elastic modulus (E001), Poisson’s ratio
(n001), anisotropy ratio (A), crystal orientation (q grain
angle), and creep strain. In addition to the design space,
several models were created that varied the material proper-
ties as well as the dimensional parameters of gage length, gage
diameter, and grip length. The material and dimensional
varied samples were used to gage the error in the inversion
code caused by extra variation that was not in the gridded
space. Table 2 provides nominal values and bounds for the
gridded design space as well as the dimensional parameter
bonds for the extra models.

VIPR Creep Correlation Method
VIPR is used to identify the resonance modes that are most
sensitive to various conditions of interest, or are most diag-
nostic of defective conditions. Depending on the variation
included in the acceptable and nonacceptable training sets,
the diagnostic pattern will often include peaks that are sensi-
tive to the defect, and some that are not. As such, VIPR
focuses on the relationships and patterns between resonances,
not the absolute frequencies themselves. Statistical scoring
using the mahalanobis-taguchi system (MTS) calculates the
mahalanobis distance which, in a PCRT context, is the
measure of a part’s position relative to the central tendency of
the reference population in N-dimensional frequency space
(Cudney, 2009). VIPR uses taguchi-based signal-to-noise
methods to evaluate thousands of combinations of resonances
from a database of candidates to discover the combination
that best separates acceptable from defective parts using the
MTS score (Taguchi et al., 2001; Schwarz et al., 2005).
While VIPR can easily identify resonance peaks sensitive

to creep (Biedermann et al., 2016), it had not been used as an
inversion tool to quantitatively evaluate the amount a
specimen has been crept. In contrast with the direct inversion
methods discussed in the preceding section, VIPR predictions
require relatively few resonance measurements. In this study,

forward model design spaces were used to train VIPR to
separate modeled samples with creep strain, from modeled
samples without creep damage. Then VIPR algorithms were
used to identify combinations of diagnostic modes that
produced the best correlations to creep damage. Once these
modes were identified, a VIPR-based correlation tool for
quantifying creep strain was established, and tested against
modeled and measured PCRT data.

Experimental Creep on Single Crystal Dogbones: Inversion
Validation

Iterative creep was performed on a SX dogbone in order to
produce measured PCRT data for validation of forward models
and to test the inversion methods discussed above. The single
crystal dogbone had the same geometry as described in other
works (Biedermann et al., 2016), while the experimental proce-
dures employed were similar to those described in previous
work on creep of polycrystalline superalloy dogbones (Goodlet
et al., 2017). First the dogbone was affixed to the load frame,
gripping the sample by a recessed ledge just beyond the gage
and filleted regions. A clam-shell furnace enclosed the sample
and the specimen grips, and was used to heat the dogbone to
950 °C. Once the furnace temperatures stabilized at the target
temperature, a uniaxial load of 300 MPa was applied and exten-
someter readings began. Two digital extensometers attached to
a creep-resistant scaffolding aligned to the dogbone grips
recorded the elongation of the dogbone for the duration of the
test. When the desired amount of creep strain had accumulated,
the test stopped by unloading the specimen and opening the
clam-shell furnace for cooling in air. Using this procedure, a
single dogbone was iteratively crept for a total of approximately
14% strain, as measured from the original 10 mm gage length.
After each creep step the dogbone was cooled to room temper-
ature, measured with calipers to verify the extensometer
readings, and evaluated with PCRT. Both the VIPR and FEM
inversion approaches were then used to quantify the creep 
elongation experienced by the dogbone based on its measured
resonance response.

TABLE 2
Dogbone parameter ranges for material properties, dimensions, and creep strain used for inversion studies*

Parameter Range Minimum Nominal Maximum
E001 ±2% 125.2 GPa 127.7 GPa 130.3 GPa
ν001 ±7%               0.348 0.374 0.400
A ±5% 2.615 2.753 2.890
θ 0–10° 0° 0° 10°
Creep 0–8% 0%                                                 0% 8%
Gage length ±1.00% 9.90 mm 10.0 mm 10.10 mm
Gage diameter ±0.75% 3.97 mm 4.00 mm 4.03 mm
Grip lengths ±1.11%               4.45 mm 4.50 mm 4.55 mm

* Creep deformation presented as % change in nominal gage length.
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Results and Discussion

FEM Forward Modeling of Creep

Over 300 dogbone and 250 blade MC-generated design
points, with and without creep, were simulated. A baseline
model with nominal values and zero creep strain was estab-
lished for each specimen geometry. The first 50 resonance
modes of subsequent model runs were mode matched to align
with the established baseline mode order. Combining these
subsequent model runs, each with unique MC parameteriza-
tions, resulted in a diverse population of modeled results for
inversion estimation and VIPR training. 
The modeling results for SX dogbones were presented by

another author (Biedermann et al., 2015). Unlike the uniaxial
plastic strain deformation seen in the creep of the SX dogbone
samples (Biedermann et al., 2016), the blades do not deform
in a purely axial manner, as shown in Figure 3, due to their
complex geometry. However, in both the dogbone and blade
geometries, increasing creep strain often produced a decrease
in frequency for the sensitive resonance modes. Of the modes
identified as diagnostic modes substantially affected by accu-
mulation of creep strain, lower-frequency modes exhibiting
bending motions were most common. 

Figure 4 shows the OFAT results from iterative creep
modeling of blade geometries. Similar to the OFAT results,
creep populations have a general decrease in frequency varia-
tion within the monte carlo design space population. Figure 5
shows the median frequency variations of the blade monte
carlo design points, in those with and without creep.
The forward modeling results were imported into a virtual

training set database for analysis using PCRT tools. Creation
of virtual spectra (via superposition of lorentzian distribu-
tions) for each simulation also allows for a visual comparison
of the model data and identification of trends. Figure 6 shows
an example of seven virtual spectra created by successively
increasing creep strain on each blade simulation. As creep
strain increases, modes that are more sensitive to creep strain,
such as Mode 15, shift more than others (for example, Mode
16 and 17). The same trend can be seen in the OFAT results
presented in Figure 4. 
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Figure 5. Median variation of model frequencies in the blade monte
carlo populations, with creep (dashed orange line) and without creep
(solid blue line).
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FEM Grid Inversion 

All creep inversion work presented in this section pertains to
the 10 mm gage length SX dogbone as described in other
scholarship (Biedermann et al., 2016). A gridded design space
was created that varied 5 material parameters: elastic modulus
(E001), Poisson’s ratio (n001), anisotropy ratio (A), crystal
orientation (q grain angle), and creep strain (Table 2).

Eight additional models were created to test the inversion
code. The first four FEM design points, A, B, C, and D, varied
material properties randomly from within the bounds of the
gridded design space while the dimensions were fixed at
nominal values to confirm that the inversion would converge
to the correct values. Then four additional points, W, X, Y,
and Z, were generated with random material and dimensional
variations. These later points helped to examine the effects of
normal dimensional variation on the inversion of creep. 
Initial guesses of each parameter were fed into the inver-

sion code for each of the 8 design points. The inversion code
then used between 30 and 35 resonance peaks to estimate
creep strain. Several inversions were performed on each
design point using different starting guesses each time. Table
3 shows the known modeled creep strain, the best fit inverted
estimate for creep strain, as well as the difference between
them for each point. The error for samples A through D quan-
tifies typical levels of uncertainty due to interpolation within
the gridded design space and convergence of the inversion
code. The larger error seen in samples W through Z reflects
the additional uncertainty caused by dimensional variation. In
order for the inversion code to estimate creep strain, other
material properties of the samples had to be inverted. Table 4
shows the absolute material property values used in the
modeling as well as the best fit inversion results. Overall, both
the inversion of the creep and inversion of material properties
were well matched to the known (modeled input) values.
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Figure 6. Virtual resonance spectra of modeled turbine blades with
increasing creep strain.

TABLE 3
Inversion results of creep for modeled inputs 

Sample Modeled creep, % Best fit, inversion creep, %                 Difference
Material variation A 1.33 1.17                                                              –0.16
Material variation B 2.67 2.55                                                              –0.12
Material variation C 5.33 5.40                                                               0.07
Material variation D 6.67 6.72                                                               0.05
Material and dimensional variation W 3.90 3.08                                                              –0.82
Material and dimensional variation X 1.30 1.42                                                               0.12
Material and dimensional variation Y 4.56 4.64                                                               0.08
Material and dimensional variation Z 6.12 5.70                                                              –0.42

TABLE 4
Inversion results of material properties for modeled inputs

Sample Modeled Inversion best fit
E (GPa) ν A θ°                       E (GPa) ν A θ°

Material variation A 126.03 0.39 2.80            3.75                      125.96 0.39 2.80 3.85
Material variation B 126.88 0.36 2.84 6.25                      126.88 0.36 2.84 6.16
Material variation C 128.59 0.37 2.66 8.75                      128.60 0.37 2.66 8.74
Material variation D 129.44 0.38 2.71 1.25                      129.46 0.38 2.71 1.18
Material and dimensional variation W 125.76 0.36 2.84 0.72                      125.74 0.36 2.84 0.00
Material and dimensional variation X 128.91 0.36 2.82            6.80                      128.82 0.36 2.83 7.08
Material and dimensional variation Y 127.61 0.38 2.64            8.57                      127.60 0.38 2.64 8.46
Material and dimensional variation Z 130.14 0.39 2.69            2.64                      130.21 0.39 2.68 2.51
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VIPR Creep Correlation

The PCRT VIPR toolset generates statistical scores that are
typically used for P/F NDE of components. VIPR scores can
also be correlated to material conditions of interest in an
inversion/characterization capacity. In this study, VIPR’s
ability to quantify the creep severity was explored.

For the dogbone geometries, VIPR used data from both
the monte carlo forward models, as well as the grid-based
models used initially for inversion. The monte carlo forward
model and the grid-based inversion models had different
nominal modeled material properties, as shown in Table 5.
The differences could confound FEM inversion results, as the
absolute frequency residuals are a key part of the convergence.
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Figure 7. (a) Vibrational pattern recognition’s correlation of mahalanobis-taguchi system to dogbone creep strain; (b) predictive ability of
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TABLE 5
Variation in the modeled material properties used for VIPR predictions

E001 range ν001 range A range θ range
Inversion grid 125 to 130 GPa 0.374 to 0.400 2.62 to 2.89                          0 to 10°
Monte carlo study 110 to 114 GPa 0.316 to 0.329 3.00 to 3.14                          0 to 12°
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However, VIPR finds optimal resonance patterns to diagnose
the creep condition. The absolute frequency values are not as
critical as the relational differences between frequencies.
As an initial test, the gridded data from the FEM inversion

were used as the VIPR training set, and the forward monte
carlo models were used as validation samples. The training set
included over 115 undeformed samples and over 230 samples
with creep. The validation set included more than 250 samples,
with and without creep strain. In the initial test, VIPR was
restricted to using the lower order modes (mode numbers 
5 to 15). Modes below mode 5 were excluded because PCRT
measurements showed the highest measurement error at the
lowest modes, where the fixture’s boundary conditions can
have a measurable effect. Modes above mode 15 were
excluded because mode-swapping in the modeled sets became
more prevalent in that range.
VIPR solutions developed from the gridded model design

set were evaluated and those with the best correlation
between MTS score and creep were chosen. For the
dogbones, the best VIPR correlation used 5 resonance modes,
as opposed to the 30 to 35 used in the inversion space. These
generated excellent predictions of creep levels for the valida-
tion monte carlo samples. The upper portion of Figure 7
shows a sample of these results. Figure 7a and 7b also high-
lights the inversion model design points A, B, C, and D.
Figure 7c and 7d shows an alternate solution where parts
from each the gridded and monte carlo data sets were used in
the VIPR training set, with 15% of the data points overall
excluded for validation.
For VIPR analysis of the blade geometries, only the monte

carlo design spaces were used. The set included 149 samples
without creep, and 43 samples with levels of creep strain
ranging from 1.0% to 5.7%. Approximately 10% of the
samples were randomly withheld for validation. VIPR solu-
tions trained to the blades did not have as high a correlation
between MTS score and creep strain as demonstrated by the
dogbone samples, but the error between the actual creep
values and the predicted creep values was comparable.
Figure 8 shows the results for the blade geometries corre-

lating MTS score to creep. The lower correlation value,
compared to the dogbones, may be due to the monte carlo 

blade population having a more complex geometry and larger
geometric tolerances than those of the dog bone populations. 
A summary of all the VIPR creep predictions are shown in 
Table 6.
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TABLE 6
Results of vibrational pattern recognition predictions of creep

Part Geometry Dogbone Dogbone Blade
Training/design data Inversion grid Grid, Monte carlo Monte carlo study
Validation data Monte carlo study Grid, Monte carlo Monte carlo study
Number of resonances in VIPR pattern 5 5 6
MTS-creep correlation 0.99 0.96 0.77
Maximum prediction in creep difference (design set) 0.57 2.67 2.6
Average predication in creep difference (design set) 0.0 0.0 0.0
Maximum prediction in creep difference (variation set) 3.2 2.18 2.7
Average prediction in creep difference (variation set) –0.57 0.03 –0.01
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VIPR sorting scores are also used to set limits for P/F-type
sorting. In such an application, using the blade models as
training data, an MTS cutoff would be selected that correlated
to a worst allowable case level of creep strain (perhaps 2%).
From Figure 8, the MTS cutoff to reject parts with less than
2% creep strain would be MTS = 2 (dashed line). Parts
measured with an MTS score higher than two could be
rejected from an overhaul process stream, or segregated for
further evaluation.

Experimental Verification and Measured Data Inversion 
A single-crystal dogbone was iteratively crept (as described
earlier) and removed at intervals to make PCRT measure-
ments. The PCRT model inversion methods were applied to
the measured spectra for the crept dogbone. E(001), n(001), A,
q, and creep strain were inverted using the FEM approach,
while the VIPR approach was used for a creep-only estimate.
The inversion results for the material properties are shown in
Table 7. The error between the measured and inverted values
of creep are shown in Table 8. Figure 9 illustrates the differ-
ences between the known creep values and the inverted creep
estimates for both modeled and measured data inversion
inputs.
The inversion code had excellent estimations of creep

strain in the measured and modeled data. The VIPR method
showed high correlation in modeled data yet showed an offset
between the estimated and measured creep strains. However,
the offset of creep estimation was consistent (approximately
4%) across all creep levels, and the correlation trend agreed

with the trend in the modeled data. VIPR currently examines
the resonance patterns of a part relative to the entire trained
population. Future work will evaluate VIPR results by
comparing a part to itself, before and after service creep, to
evaluate if the correlation between MTS and creep deforma-
tion can be improved. This verification demonstrates that
both FEM and VIPR inversion can be trained through PCRT
forward models to invert the quantity of creep damage in an
SX dogbone.
In addition to estimating creep strain, the inversion code

produced estimates of the material properties for the modeled
and measured data. The true values of the measured data
material properties are unknown and verification is needed to
determine how close the inversion estimations are. To further
evaluate the inversion results, FEM models were created using
the best-fit inversion parameters of creep strain and material
properties. Figure 10 compares the change in frequency from
the undeformed state to 3% creep strain in the modeled and
measured data. While a slight offset exists between the
measured and modeled frequencies, the overall pattern is
consistent because the measured and modeled mode sensitivi-
ties are the same. In fact, the measured creep data include a
global frequency shift of approximately +0.3% after the first
creep increment, which was not anticipated by the models. A
similar anomalous global increase in resonance was reported
after the first creep increment of polycrystalline superalloy
dogbones by other authors, who postulate these observations
may be due to changes in material microstructure or the
residual stress state of the part (Goodlet et al., 2017). 
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TABLE 7
Inversion of material properties from measured data

Sample, measured creep strain, % Inversion best fit
E (GPa) ν A θ°

0 127.32 0.38 2.84                                4.08
0.20 127.81 0.38 2.83                                4.28
0.60 128.10 0.38 2.82                                3.90
3.20 128.36 0.38 2.83                                4.10
9.10 128.64 0.39 2.85                                2.92

TABLE 8
Inversion and VIPR estimates of creep strain from measured data

Measured creep VIPR estimate VIPR difference Inversion, best fit Inversion error, 
strain, % creep strain, % creep strain, % difference
0.0 4.30 4.30 0.00 0.00
0.20 4.60 4.40 0.19 –0.01
0.60 4.80 4.20 0.59 –0.01
3.20 7.10 3.90 2.87 –0.33
9.10 13.60 4.50 9.13 0.03
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Conclusions and Future Work

This work demonstrates that a series of forward models can
be used to train FEM inversion and VIPR algorithms to
estimate the quantity of creep strain. Validation of forward
models with experimental data showed the good model
predictions of the resonance frequency changes in a range of
creep strains. This work also shows that in modeled data, a
part’s resonant frequencies can be used to invert other
material and geometric parameters that describe a part
including E(001), n(001), A, and grain angle (q). Ultimately,
PCRT forward models and inversion can be expanded to
include additional geometries, damage  mechanisms, and
inversion parameters. Future work will create and evaluate an
inversion gridded design space for the SX blade geometries.
Monitoring and measuring the change in resonance exhibited
by a single part throughout its service life would allow the
inversion process to focus on characteristics that have
changed, without being confounded by sources of variation
from the initial part state. For example, the primary grain
angle affects resonance measurements, but does not change
significantly during a service interval. Comparing a part to
itself over time should therefore highlight the effects that
damage accumulation has on resonance, while being immune
to the natural parameter variation observed in a population 
of parts.
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