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Abstract. Process Compensated Resonance Testing (PCRT) is a non-destructive evaluation (NDE) method involving the 

collection and analysis of a part’s resonance spectrum to characterize its material or damage state. Prior work used the 

finite element method (FEM) to develop forward modeling and model inversion techniques. In many cases, the inversion 

problem can become confounded by multiple parameters having similar effects on a part’s resonance frequencies. To 

reduce the influence of confounding parameters and isolate the change in a part (e.g. creep), a part-to-itself (PTI) 

approach can be taken. A PTI approach involves inverting only the change in resonance frequencies from the before and 

after states of a part. This approach reduces the possible inversion parameters to only those which change in response to 

in-service loads and damage mechanisms. To evaluate the effectiveness of using a PTI inversion approach, creep strain 

and material properties were estimated in virtual and real samples using FEM inversion. Virtual and real dog bone 

samples composed of nickel-based superalloy Mar-M-247 were examined. Virtual samples were modeled with typically 

observed variations in material properties and dimensions. Creep modeling was verified with the collected resonance 

spectra from an incrementally crept physical sample. All samples were inverted against a model space that allowed for 

change in the creep damage state and the material properties but was blind to initial part dimensions. Results quantified 

the capabilities of PTI inversion in evaluating creep strain and material properties, as well as its sensitivity to 

confounding initial dimensions. 

INTRODUCTION 

Process Compensated Resonance Testing (PCRT) is a non-destructive evaluation (NDE) method involving the 

collection and analysis of a part’s resonance spectrum to evaluate its material or damage state [1]. Historically, 

applications of PCRT have evaluated parts on a pass or fail basis, determining if a part is good or bad by training 

pattern recognition algorithms to the spectra of known good and bad populations, and then sorting the part based on 

its similarity to both populations [2]. While this approach is often sufficient from a quality control standpoint, it is 

often desirable to more fully characterize a defective part to better understand the nature and root cause of the 

defect/damage. To this end, recent PCRT research has focused on developing modeling capabilities to investigate 



how and which resonance modes of a given part will react to changes in material, geometry, or even damage state 

[3-4]. Using the finite element method (FEM), a part’s resonance frequencies can readily be produced from a given 

set of defining parameters. 

The inverse problem, determining a part’s defining parameters from its resonance frequencies, is often not as 

straightforward. Model inversion using resonant ultrasound spectroscopy (RUS) is an established solution to this 

problem but has largely been limited to characterizing bulk elastic properties in simple coupon geometries [5-6]. 

Recent work in developing RUS has addressed samples of arbitrary geometry [7,8], multiple misaligned crystals 

[9,10], defects and damage states [4,11], and the use of FEM to enhance RUS capabilities [3,12]. By introducing 

FEM forward modeling, the inversion problem can be expanded to cover complex geometries, materials, and 

damage states. However, in doing so, the complexity of the problem increases; extra dimensions, localized material 

properties, and damage states such as cracking and creep can quickly increase the dimensionality of an inversion 

problem. This increase in dimensionality not only has a steep computational cost, but can also cause the problem to 

become ill-posed. 

In cases where the parameters of interest are the changes between two states of a part, such as evaluating a part 

before and after a service cycle to characterize potential damage, a part-to-itself (PTI) approach can alleviate many 

of these issues. PTI involves analyzing the changes in a part’s resonance frequencies between states, rather than the 

absolute frequencies themselves. By doing so, the resonance effects of many of the aforementioned confounding 

factors that do not change between states will be minimized, homing in on only those parameters that are changing. 

The PTI approach has previously been implemented in PCRT sorting solutions. This study examines the application 

of a PTI approach to the model inversion problem by attempting to quantify creep strain in nickel-based superalloy 

dog bone coupons and comparing the results to a non-PTI inversion method.  

INVERSION METHODS 

PCRT Model Inversion 

Model inversion, in the context of PCRT, refers to the estimation of a set of parameters that describe a sample 

using its resonance frequencies. This is done by iteratively modeling frequencies from different combinations of 

parameters until there is a satisfactory match between the modeled frequencies and the sample frequencies. Figure 1 

shows this process in more detail. 

 

 

FIGURE 1. Diagram of general PCRT model inversion 

To begin, the measured resonance frequencies of the sample are passed to the inversion code, along with some 

initial guesses as to what the parameter values might be. These initial parameters can be educated guesses based on 

literature or random guesses within the problem bounds. They are then passed to the inversion model, which 

calculates what the resonance frequencies would be for that set of parameters. The modeled frequencies are then 



compared to the measured sample frequencies and the sum-of-squares of the residual errors (SSE) is passed to the 

optimization routine. The optimization routine makes changes to the parameter values based on the SSE. The 

process is repeated until a convergence criterion has been met: either the SSE is below a certain threshold or is not 

changing appreciably with further iterations. For this study, a non-linear least squares approach was taken for 

optimization using a trust-region-reflective algorithm [13]. Because non-linear least squares estimation is not 

guaranteed to find a global solution, multiple repetitions of each inversion were performed using different initial 

values. Initial values were chosen pseudo-randomly using Latin hypercube sampling to ensure that the full range of 

parameter values in the given bounds was represented [14]. The best fit solution was then chosen as whichever 

repetition had the lowest SSE. 

The inversion model that has historically been used in resonance inversion is an energy minimization technique 

that finds resonances of a solid body by approximating solutions of the mechanical Lagrangian [5-6]. While this 

approach is computationally inexpensive, it is limited to simple, elastically homogenous geometries such as spheres, 

rectangular parallelepipeds, and cylinders. To perform inversion of more complex geometries and material 

characteristics, and damage states, an FEM modeling approach was implemented. Because FEM has a relatively 

high computational cost per model, and the inversion model must be called at every iteration, a surrogate model was 

created to serve as the actual inversion model. This surrogate model quickly interpolates over a pre-generated grid of 

FEM model solutions [15]. While this approach introduces some additional uncertainty in the form of surrogate 

model interpolation error, it allows for fast inversion while still taking advantage of FEM’s ability to model complex 

parts. 

Part-to-Itself Inversion 

Two approaches to PTI inversion were evaluated in this study and will hereon be referred to as Method 1 and 

Method 2. Each method has inherent advantages and disadvantages, which will be discussed below. Figure 2 shows 

a diagram of Method 1, illustrating that it shares an identical algorithm to general inversion, but with parameters and 

frequencies replaced with parameter changes and resonance changes. This similarity makes the implementation of 

this method fairly straightforward, allowing for code that can easily perform both general and PTI inversion. 

Additionally, the inversion model is, at least partly, composed of changes between FEM models. This usually 

requires some assumptions during setup of the inversion model space as to absolute parameter values and which 

parameters will change. In cases like crystal orientation, relative changes cannot be generalized because they are so 

dependent on the absolute orientation (e.g. 10°-15° ≠ 45°-50°), and modeling every combination would increase the 

dimensionality of the problem. In such a case, it is often more practical to make educated assumptions about how a 

parameter might change (or not change). 

 

 

FIGURE 2. Diagram of part-to-itself inversion Method 1 

The diagram of Method 2, shown in Fig. 3, illustrates a similar design to Method 1 with a slight increase in 

complexity; instead of using changes for both frequencies and parameters, changes in frequencies are used with 



absolute parameters for the initial and final states. The inversion model in this case is constructed the same way it 

would be in non-PTI inversion and returns absolute frequencies given absolute parameters for both states. The 

modeled frequency changes are then calculated by taking the difference. This approach alleviates the need to make 

assumptions about parameter values and which parameters will change, but effectively doubles the number of 

parameters of the inversion problem, increasing the difficulty for the optimization routine. 

 

 

FIGURE 3. Diagram of part-to-itself inversion Method 2 

SOURCES OF UNCERTAINTY 

In the evaluation of inversion methods, several sources of uncertainty must be considered and addressed. These 

sources can generally be broken down into two categories: aleatory and epistemic uncertainty. Aleatory uncertainty 

encompasses the inherent randomness in a system. In the case of PCRT inversion it refers to part-to-part variation, 

such as random material property, crystal orientation, and dimensional variation, as well as shot-to-shot 

measurement variation in the collection of resonance spectra. Work done by Biedermann et al. [16] addressed the 

relative impact of these aleatory sources and found part-to-part variation was the dominant driver of uncertainty 

while shot-to-shot measurement variation was a small contributor. Based on these findings, this study focused on 

addressing part-to-part variation and used an average of shot-to-shot measurements. Epistemic uncertainty 

encompasses system parameters that are assumed to have a fixed but unknown value. This includes (but is not 

limited to) mesh uncertainty, inherent in discretizing a part into finite elements, the aforementioned surrogate model 

uncertainty due to interpolation error, and the presence of un-modeled or oversimplified parameters. Part-to-itself 

inversion will ideally mitigate the latter source by eliminating the effects of those un-modeled or oversimplified 

parameters that do not change between states. Epistemic uncertainty also includes uncertainty in the convergence of 

the optimization routine due to false local minima. Simultaneous work devoted to quantifying the uncertainty of the 

methods described here will be presented in [15] and thus will not be discussed in this paper. 

MODEL SETUP 

The part used in this study was an axisymmetric dog bone coupon geometry, shown in Fig. 4, composed of 

single crystal Mar-M-247. Mar-M-247 is a nickel-based superalloy with cubic symmetry and thus has three degrees 

of freedom in material properties, defined here as Young’s modulus (E001), Poisson’s ratio (ν), and Zener anisotropy 

ratio (A). For a single crystal specimen, crystal orientation must also be defined and, due to the axisymmetry of the 

part, may be approximated by a single crystal angle (θ): that between the axis of symmetry of the part (Z axis in Fig. 



4) and the [001] crystallographic vector. Additionally, Fig. 4 denotes the initial (undeformed) part dimensions that 

were shown to have a more substantial effect on resonance [17]: gauge diameter (Dgauge), gauge length (Lgauge), and 

grip lengths (Lgrip). The final model parameter considered is creep strain, which was chosen as the damage mode of 

interest for this study. Prior work by Goodlet et al. [11] identified shape deformation as the dominant factor in 

resonance changes due to creep and established a reliable method for modeling these changes. Constraints and loads 

were applied as they would be in an experimental creep setup, shown in Fig. 5, and the Hill yield criterion used to 

simulate anisotropic flow [18].  

 

 

FIGURE 4. Dog bone coupon geometry with dimension and crystal orientation parameter labels 

 

 

FIGURE 5. Dog bone model showing creep constraint and applied load 

 

TABLE 1. Parameter values for the bounds of the inversion space, the nominal part, and the modeled inversion inputs. Note that 

creep is given as a percent of the nominal gauge length (10 mm) 

Parameter 
Inversion Model Space Modeled Input Points 

Range Min Nominal Max Mod-1 Mod-2 Mod-3 Mod-4 

E001 (GPa) +/- 2.00% 125.18 127.73 130.29 125.76 128.91 127.61 130.14 

ν001 +/- 7.00% 0.35 0.37 0.40 0.36 0.36 0.38 0.39 

A +/- 5.00% 2.62 2.75 2.89 2.84 2.82 2.64 2.69 

θ (°) 0-10.00 0.00 0.00 10.00 0.72 6.80 8.57 2.64 

Dgauge (mm) N/A N/A 4.00 N/A 4.02 3.98 3.99 4.01 

Lgauge (mm) N/A N/A 10.00 N/A 9.93 9.98 10.08 10.02 

Lgrip1 (mm) N/A N/A 4.50 N/A 4.52 4.53 4.46 4.48 

Lgrip2 (mm) N/A N/A 4.50 N/A 4.54 4.48 4.51 4.47 

Creep (%) 0-12.00 0.00 0.00 12.00 3.90 1.30 4.60 6.10 

 

To address the more prominent sources of aleatory uncertainty discussed earlier, the modeled inversion space 

explored variation in all of the material and crystal orientation parameters in established ranges for the acquired 

specimens [16]. Creep strain was also included in the inversion space as the primary parameter of interest. To 

compare the inversion methods with known parameters, four modeled input points were generated with random 

variation in all of the parameters included in the inversion space, as well as variation in the initial dimensions to 

evaluate the methods’ performance in the presence of un-modeled parameters, addressing epistemic uncertainty. 

Table 1 provides bounds for the inversion space, the nominal model parameter values, and the parameter values for 

the modeled inversion input. 



RESULTS AND DISCUSSION 

Modeled Inversion Results 

Figures 6-7 plot the inversion results for the modeled input points; Fig. 6 shows the best fit creep value for each 

method plotted against the known input value and Fig. 7 plots the absolute error of those results in percent strain. 

Overall, inversion using the PTI methods proved to be consistently as good as or better than using the general 

approach with error for both methods falling within 0.25% strain for every sample. Between the PTI methods, 

Method 1 was slightly more accurate than Method 2. A possible explanation for this lies in the assumptions made in 

creating the surrogate model for Method 1. In order to keep the surrogate model to a reasonable size, it was 

necessary to assume that crystal orientation (θ) would remain constant between the different creep increments due to 

its complex interaction with other parameters. This assumption was inherently true for the modeled input due to the 

methods used for modeling creep. Method 2 did not require this assumption and thus may have converged to local 

minima with some crystal orientation angle change between states. 

Table 2 provides inversion results for the material parameters. Because the only change between initial and final 

states for the modeled inputs was elongation due to creep, all of these parameters should ideally converge to zero; 

thus this table can also serve as a summary of inversion error. It confirms that the best fit results for Method 2 did 

indeed converge to non-zero crystal orientation change, though very small θ in most cases. Examination of the 

remaining parameters reveals that no method is consistently more accurate for estimation of ν001 or A, though PTI 

inversion performed slightly better for E001. 

 

 

FIGURE 6. Inversion estimates of creep strain for modeled input 

 

FIGURE 7. Error in inversion estimates of creep strain for modeled input 



 

TABLE 2. Modeled input inversion results for change in material properties and crystal orientation 

 Sample Mod-1 Mod-2 Mod-3 Mod-4 

ΔE001 (%) 

Non-PTI -0.37 -0.04 -0.03 -0.12 

Method 1 0.00 -0.02 0.02 0.04 

Method 2 -0.02 -0.04 -0.03 0.02 

Δν001 (%) 

Non-PTI -1.60 -0.41 -0.24 -0.48 

Method 1 -0.09 -0.18 0.36 0.18 

Method 2 -0.25 -0.37 -0.27 0.03 

ΔA (%) 

Non-PTI -0.50 -0.11 -0.08 -0.36 

Method 1 -0.01 -0.10 -0.14 -0.02 

Method 2 -0.07 -0.14 -0.11 -0.17 

Δθ (°) 

Non-PTI -2.20 0.03 0.03 -0.75 

Method 1 N/A N/A N/A N/A 

Method 2 0.07 0.02 0.01 -0.60 

 

Experimental Verification 

To verify the advantages of PTI experimentally, a physical coupon of the modeled geometry was incrementally 

crept, and resonance data was collected after each subsequent change in length. Using the same experimental setup 

described in [11], the sample was heated to 950° C with a 300 MPa load in an open-air clam-shell furnace. Table 3 

provides strain and test time data for each creep increment. Although resonance spectra were collected at every 

increment, inversion was only performed for the first four increments; creep above 10% strain was deemed not of 

interest primarily due to its ease of detection by simple visual inspection as well as the necessity to detect creep 

defects prior to reaching critical stages. 

 

TABLE 3. Experimental creep increments with corresponding strains and test times 

Increment Dog Bone Strain (% of Nominal Gauge Length) Test Time (h) 

Exp-1 0.2 0.4 

Exp-2 0.6 1.2 

Exp-3 3.2 13.5 

Exp-4 9.1 26 

Exp-5 10.1 27 

Exp-6 11 28 

Exp-7 12.3 29 

Exp-8 14 30 

Exp-9 17 32 

 

Figure 8 presents a comparison of frequency shifts for modeled versus measured creep for 3.2% creep strain. 

There is good agreement between the measured and modeled frequency shifts, particularly in the pattern of which 

modes are more or less affected by creep. Because the inversion algorithm optimizes to the SSE it is particularly 

sensitive to the patterns of frequency change and likely to home in on the correct solution. However, there is also a 

slight, but consistent, overestimation in frequency change by the model. This is because of the overall upward shift 

in measured frequencies in the first creep increment, which is consistent with the findings in [11] but not accounted 

for in the creep model. The cause of this shift is still uncertain. 

 



 

FIGURE 8. Frequency changes by mode due to modeled and measured creep  

 

Figures 9-10 plot the inversion results for the first four increments of the experimentally crept sample. While all 

three inversion methods still performed well, the accuracy distinction between the PTI methods and the general 

approach that was present in the modeled input inversion was no longer apparent for the measured. Non-PTI 

accuracy floated between + 0.25% strain for all levels of creep. The PTI methods did show improved accuracy at the 

lower creep levels, which is encouraging as earlier detection is always preferable. This trend may be due to 

simplifications in the creep modeling breaking down at higher levels of creep or uncertainty in the creep 

measurements of the sample. Additionally, the lower levels of creep showed nearly identical results between Method 

1 and Method 2, possibly indicating that the assumptions of unchanging crystal orientation in Method 1 were invalid 

or that the additional uncertainties introduced in using measured inputs (such as noise or inhomogeneities in the 

part) reduced the possible local minima. Although additional tests were not performed to verify the inversion 

accuracy of the remaining inversion parameters (E, ν, A, θ), valuable conclusions can still be drawn from the best-fit 

results, presented in Table 4. Unlike the current creep model, which does not account for change in material 

parameters, E001 exhibited a steady increase with increasing creep increments while A exhibited a steady decrease. 

The changes in these parameters may indicate areas for further investigation in creep modeling techniques. 

Additionally, though most of the best fit changes were fairly consistent between the three methods for the first three 

creep increments, the same cannot be said for Exp-4. This break in trend lends credence to the theory that the creep 

model loses accuracy at higher levels of strain, and the non-geometric effects of creep begin to play a more 

important role in resonance. 

 

 

FIGURE 9. Inversion estimates of creep strain for measured input 



 

FIGURE 10. Error in inversion estimates of creep strain for measured input 

 

TABLE 4. Measured input inversion results for change in material properties and crystal orientation 

 Sample Exp-1 Exp-2 Exp-3 Exp-4 

ΔE001 (%) 

Non-PTI 0.37 0.56 0.84 1.13 

Method 1 0.37 0.56 0.82 0.91 

Method 2 0.38 0.58 0.86 0.99 

Δν001 (%) 

Non-PTI 0.13 0.06 0.03 0.39 

Method 1 0.14 0.08 -0.12 1.30 

Method 2 0.10 0.06 -0.31 -0.15 

ΔA (%) 

Non-PTI -0.05 -0.16 -0.36 -0.69 

Method 1 -0.06 -0.16 -0.38 0.21 

Method 2 -0.11 -0.23 -0.50 -0.57 

Δθ (°) 

Non-PTI 0.08 0.10 0.00 -0.65 

Method 1 N/A N/A N/A N/A 

Method 2 0.06 0.03 0.03 -2.26 

CONCLUSION 

PTI inversion mitigates the effects of confounding parameters and aleatory uncertainty sources and has the 

potential to provide better parameter estimates than non-PTI inversion of RUS data. Two part-to-itself inversion 

methods were developed to extract information about changes in the part’s material and damage state. Method 1 

uses the established structure of general resonance inversion by simply replacing frequency and input parameter 

values with changes in those values. Method 2 generates parameters and frequencies for the initial and final part 

states and optimizes those parameters using solely the change in frequencies. Results demonstrate that both PTI 

methods have consistently superior inversion accuracy over non-PTI inversion when using modeled sample inputs. 

Method 1 slightly out-performed Method 2 in all cases. Experimental verification was performed by iteratively 

creeping a dog bone specimen and collecting spectra at multiple strain levels. Inversion results using these spectra as 

inputs found that the PTI methods’ improved accuracy held at lower levels of creep, generally considered to be more 

critical for early detection, but less so at higher levels. Future work will continue to investigate both PTI methods, as 

well as a combined PTI and absolute approach, using a more robust sample population (virtual and experimental) 

and more complex geometries, such as an airfoil.   
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