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ABSTRACT 
Polymer O-rings are an essential part of many designs, 

including mission and safety critical systems. Currently, there 

are no accurate destructive tests for measuring the polymer 

properties of O-rings (e.g. durometer), let alone nondestructive 

methods. As such, it is difficult to identify substandard, 

nonconforming, improperly processed or counterfeit O-rings. 

This work combines resonant ultrasound spectroscopy (RUS) 

with machine learning and predictive analytics to sort O-rings 

based on material and durometer (multinomial classification) 

and to accurately estimate the mass and durometer with an 

ultrasonic examination that takes less than 10 seconds. Results 

from a population including eight materials and six durometers 

are presented and discussed. 

 

Keywords: Resonance, Resonant Ultrasound Spectroscopy, 

RUS, Polymer, Machine Learning 

 

1 INTRODUCTION 
Detecting substandard, nonconforming, improperly 

processed, or counterfeit parts has become an increasingly 

important topic for private companies and government agencies 

alike. Polymer O-rings are essential to many mission and safety 

critical systems. Detection of unacceptable O-rings is hampered 

by the lack of effective nondestructive evaluation (NDE) 

methods for this application. A fast, accurate, and reliable NDE 

method for O-rings is needed to guarantee safety and mission 

success. 

Substandard, nonconforming, improperly processed, or 

counterfeit parts, colloquially referred to as Suspected 

Unapproved Parts (SUP), are present in nearly every industry, 

but the likely loss of life due to SUP is probably highest in the 

aerospace industry. Groups like the AIA (Aerospace Industries 

Association) have been trying to draw attention to the dangers of 

SUP for several years [1]. 

An internal 1995 FAA audit estimated that more than 

500,000 unacceptable parts are installed on aircraft each year [2]. 

 
1 Contact author: rlivings@vibrantndt.com 

An additional study by the FAA of its Accident and Incident Data 

System (AIDS) database specified 147 accidents/incidents were 

attributable to SUP between 1973 and 1996 [3]. Later, a review 

of the NTSB accident database found nearly two dozen accidents 

attributable to SUP between 2010 and 2017 [4]. In fact, Baker 

estimated that SUP accidents and incidents continue to occur at 

a rate of ~2.3 per year [5]. 

In 1995, the FAA implemented SUP detection plan [6], but 

an OIG review in 2017 concluded that the detection activities 

were practically ineffectual and recommended significant 

enhancements [7]. 

In addition to the accidents that occurred due to SUP, there 

have been multiple cases were SUP was detected before 

installation. In fact, there have been multiple cases of contractors 

and subcontractors selling counterfeit polymeric O-rings to US 

government agencies [8], [9]. 

The reason polymeric O-rings are so easy to counterfeit is 

their similarity in visual appearance. Several of the largest 

manufacturers of polymer O-rings recognize the extensive 

problem of counterfeit O-rings and the difficulty with 

identification and testing. These manufacturers have proposed 

various solutions from QR codes [10] to imbedded RFID tags 

[11]. 

Currently, there are no accurate and reliable methods to 

measure the durometer of an O-ring or to nondestructively 

characterize its material [12], [13], [14]. The standard durometer 

measurement method is a semi-destructive Shore hardness A test, 

which is not applicable to O-rings. The applicable method (Shore 

M) is a semi-destructive micro-harness test and is not accurate 

or reliable due to the deformation of the O-ring during testing. 

Existing material characterization methods, like Fourier 

Transform Infrared Spectroscopy (FTIR), are slow, labor-

intensive, open to interpretation errors, and can be destructive. 

An alternative approach to material characterization and 

durometer measurement in O-rings is needed. By characterizing 

the filtering effects of O-rings on a resonance spectrum, 

extracting signal features, and analyzing with machine learning, 
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FIGURE 1: DIAGRAM OF DUROMETER TESTING. 

 

material and durometer differences between O-rings can be 

distinguished. 

This paper presents a novel nondestructive method for 

determining the material, durometer, and mass of polymer O-

rings using RUS and a Random Forest machine learning 

algorithm. Using this approach, O-rings were accurately sorted 

into eleven material-durometer classifications, their durometer 

was accurately estimated to within the standard tolerance, and 

their mass was accurately estimated to within the measurement 

error. 

 

2 BACKGROUND 
As stated by one of the leading manufacturers of O-rings, O-

rings are nearly identical and very difficult to distinguish from 

each other [11]. Industry standard O-ring characterization 

includes measurements for hardness, toughness, tensile strength, 

elongation, compression force, and many others. Unfortunately, 

the vast majority of these are destructive and are performed on a 

limited sampling of O-rings. This leads to a dearth of options for 

sorting, characterizing, or verifying O-ring conformity 

nondestructively. 

 

2.1 Current NDE Methods 
The two most common approaches to classifying O-rings 

are the Shore hardness test and Fourier Transform Infrared 

Spectroscopy (FTIR) [12]. Both of these methods are debatably 

nondestructive, rely on limited sampling, have some significant 

limitations, and are much less likely to provide accurate results 

than 100% testing using the resonance method presented here. 

Shore hardness testing is an indentation method with 

multiple scales depending on the indentation head and load. 

Shore A, D, and M are the most common where M is a much 

smaller indentation head. FIGURE 1 demonstrates the 

differences between type A and type D while FIGURE 2 

provides a qualitative comparison of the various scales. Note that 

 

TABLE 1: UNCERTAINTY OF SHORE HARDNESS TESTERS 

(A & D). RECREATED FROM [18]. 

Durometer uc U 

30 1.4639 2.94 

50 1.4731 4.35 

100 1.4751 3 

uc – Relative combined standard uncertainty 

U – Relative expanded uncertainty 

 
FIGURE 2: QUALITATIVE COMPARISON OF DUROMETER 

SCALES. 

 

while each scale is internally linear, they are not necessarily 

linear with each other and that the standard tolerance on one 

scale does not equate to the standard tolerance on another scale. 

The drawbacks for this method are numerous, including the 

inability to measure actual parts and exceptionally large 

uncertainties (Section 2.2). 

FTIR examines the absorbance or reflectance spectrum to 

identify the chemical make-up then correlates that to a database 

to determine the material type [15], [16]. This method often 

requires destructive preparation, requires a library of material 

spectra, takes a significant amount of time, and can misclassify 

materials. It is also difficult to ascertain the mechanical 

properties imparted from processing or manufacture. 

 

2.2 Durometer Uncertainty Quantification 
The uncertainty in O-ring durometer is due to four distinct 

sources: the tolerance, the measurement error, the deformation 

hardening of polymers, and the use of witness coupons. Witness 

coupons are never the same shape as an O-ring and experience 

different material post processing due to cure differences [12]. 

O-rings procured from a reputable supplier can deviate as 

much as ±8 durometer from the stated durometer (combined 

tolerance and measurement error) and can deviate as much as 

±16 durometer from the other O-rings in the shipment. This is 

due to the combined tolerance (non-Gaussian) and measurement 

error (Gaussian). The industry standard tolerance is ±5 [13], 

which is attributable to reproducibility issues [17], while the 

Shore A & D measurement error is generally within ±3 (TABLE 
1) for properly calibrated measuring devices [18]. In addition to 

these issues, some O-ring polymers are very sensitive to 

temperature fluctuations around room temperature as shown in 

FIGURE 3 and can vary by as much as 5 durometer. 

Misleading hardness measurements due to the deformation 

of the O-ring is best exemplified by the Shore M results shown 

in FIGURE 4. Shore M was designed specifically for small 

specimens such as O-rings, but the measurement can still vary 

by 40 durometer as the O-ring cross-section decreases. This 

effect becomes more pronounced for more compliant samples 

where the measurement can be off by more than 100% of the 

actual durometer. This makes the Shore M method (as well as 

other Shore scales) completely unreliable for a significant 

number of O-rings. 

Shore A & D are limited to flat coupons, so a witness 

coupon is often used. Witness coupon testing, or population 

sampling, has a low Probability of Detection since the witness 
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FIGURE 3: TEMPERATURE DEPENDENCE OF POLYMER 

DUROMETER [13]. 

 

coupons or selected parts are not necessarily representative of 

the entire population. In fact, witness coupons are cured 

differently than O-rings due to shape differences [12]. Some 

companies perform destructive tests on a few components from 

a batch and disposition the entire batch based on the results. In a 

worst-case scenario, this is a false negative rate of nearly 100%. 

 

2.3 Process Compensated Resonance Testing 
Resonant Ultrasound Spectroscopy (RUS) is a full-body 

inspection method popularized by Albert Migliori (Los Alamos 

National Lab) in the 1980’s. The method is predicated on the 

physical principle that any rigid, elastic body will resonate at 

specific frequencies that are a function of geometry, mass, 

material properties, and defects/damage. RUS drives a part to 

resonate and maps out the resonance spectrum. 

Resonance methods were selected for this project due to the 

intimate relationship between a part’s mechanical properties (e.g. 

stiffness/durometer) and its resonance behavior. In fact, anything 

that affects the mechanical behavior (at least the static behavior) 

will influence the resonance spectrum. As such, RUS is often 

used for material characterization. 

The Vibrant approach to RUS, referred to as Process 

Compensated Resonance Testing (PCRT), applies statistical 

analyses and machine learning to RUS data in order to identify 

 

TABLE 2: LIST OF MATERIAL AND DUROMETER GROUPS. 

Material Groups  Durometer Groups 

 Material Count   Durometer (±5) Count 

1 BunaN 342  1 65A 97 

2 CRBunaN 31  2 70A 577 

3 EPDM 148  3 75A 143 

4 Florosilicone 32  4 80A 19 

5 Polyurethane 31  5 90A 21 

6 PTFE 33  6 98.5A 33 

7 Silicone 130     

8 Viton 143     

 
FIGURE 4: INFLUENCE OF SPECIMEN THICKNESS ON 

DUROMETER MEASUREMENT. EACH LINE REPRESENTS THE 

NOMINAL DUROMETER. (RECREATED FROM 

APPLERUBBER.COM) 

 

defects in the presence of acceptable process/population 

variations. Vibrant also employs a stepped-frequency sine wave 

excitation for improved frequency resolution and accuracy. 

The application of RUS and PCRT for NDT&E is described 

by several ASTM standards [19] - [21]. PCRT has also been 

described in several recent publications [22] - [24]. In this paper, 

we describe an extension of PCRT to characterizing filters as 

opposed to the resonating bodies themselves. 

 

3 MATERIALS AND METHODS 
3.1 Materials 

The samples examined in this study included eight separate 

material types and six durometers that were grouped into 11 

distinct material-durometer classes. The materials and 

durometers are presented in TABLE 2. Multiple ages and batches 

were included in the sample populations to provide process 

variation but were not considered for analysis purposes. This was 

done to demonstrate characterization capabilities in the midst of 

normal process variation. 

“Dash-ten” (-10) O-rings (cross-section = 0.070”, inner 

diameter = 0.239”, outer diameter = 0.379”) were chosen for this 

study in part due to their wide availability in many materials and 

durometers. Variations in size and geometry were not included 

since this study focused on distinguishing nearly identical O-

rings and detecting substandard, nonconforming, improperly 

processed, or counterfeit parts. 

The durometer provided by the manufacturer was the 

“nominal durometer” for the O-rings determined by Shore A 

measurements on witness coupons with a standard tolerance of 

±5. This meant that the true durometer of each O-ring was 

UNKNOWN and that there was a significant likelihood of cross-

over between durometer groups separated by 5A (e.g. 65A & 70A 

or 70A & 75A). The combined tolerance (non-Gaussian) and 

measurement error (Gaussian) indicates that there may have 

been cross-over between groups separated by 10A (e.g. 65A & 

75A). 
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3.2 Linear Systems Approach 
Soft polymers are viscoelastic in nature, highly attenuative, 

and difficult to drive to resonance. Given these difficulties for 

standard ultrasonic inspection in general and resonance 

inspection in particular, a new approach was needed. For this 

work we employed the linear system model popularized by 

Schmerr & Song [25]. The PCRT system used in this study can 

be characterized as a linear system since it met the homogeneity, 

additivity, and shift invariance requirements for linear systems. 

With this approach, we treat the system as a linear elastic system 

and the soft polymer as a filter placed in the system. Thus, we 

can extract the acoustic-elastic transfer function for the O-ring. 

The received spectral signal (VR(ω), where ω is the circular 

frequency) is influenced by the signal generation process, the 

cabling, the reception process, and the signature of the part under 

examination. The received voltage signal therefore contains the 

transfer functions for the system, S(ω), and the 

propagation/filter, R(ω), in addition to the input voltage function, 

VI(ω). The filter characteristic function can then be extracted by 

deconvolving (spectral division) the input signal and system 

function from the received signal (Eq. 1a). A Weiner filter is used 

to reduce the sensitivity of the deconvolution to signal noise (Eq. 

1b). 

In practice, it is simpler to calibrate the system than it is to 

develop a system model. This involves collecting two signals, 

one with the O-ring (VR2) and another without (VR1). The 

characteristic function of the O-ring can then be extracted by 

deconvolving the first signal from the second (Eq. 2a), again 

using a Weiner filter to reduce noise (Eq. 2b). 

 

𝑉𝑅(𝜔) = 𝑆(𝜔)𝑅(𝜔)𝑉𝐼(𝜔) → 𝑅(𝜔) =
𝑉𝑅(𝜔)

𝑆(𝜔)𝑉𝐼(𝜔)
          (1a) 

𝑅(𝜔) =
𝑉𝑅(𝜔)𝑐𝑜𝑛𝑗(𝑆(𝜔)𝑉𝐼(𝜔))

|𝑆(𝜔)𝑉𝐼(𝜔)|
2+𝜀2𝑚𝑎𝑥{|𝑆(𝜔)𝑉𝐼(𝜔)|

2}
           (1b) 

𝑉𝑅2(𝜔)

𝑉𝑅1(𝜔)
=

𝑆(𝜔)𝑅(𝜔)𝑉𝐼(𝜔)

𝑆(𝜔)𝑉𝐼(𝜔)
             (2a) 

𝑅(𝜔) =
𝑉𝑅2(𝜔)𝑐𝑜𝑛𝑗(𝑉𝑅1(𝜔))

|𝑉𝑅1(𝜔)|
2+𝜀2𝑚𝑎𝑥{|𝑉𝑅1(𝜔)|

2}
            (2b) 

 

3.3 Experimental Configuration 
The experimental configuration used in this study 

comprised a standard Vibrant PCRT system and custom 

transducers. The general flow diagram of the system is shown in 

FIGURE 5. A stepped-frequency sine wave was used to excite 

resonance in the drive transducer. These displacements were  

 

 
FIGURE 5: BLOCK DIAGRAM OF THE PCRT SYSTEM 

CONFIGURATION. 

 
FIGURE 6: ULTRASONIC TRANSDUCER ASSEMBLY WITH 

O-RING SAMPLE. 

 

dampened by the O-ring as they propagated to the receiver. The 

received signals were then collected and processed with a 

spectrum analyzer and the resultant frequency-dependent 

amplitude recorded. Data was collected via a series of 15 

windows centered around the resonance peaks with a total 

collection range of 15-288 kHz. Each window utilized a boxcar 

function with widths less than 5 kHz. 

Both transmitting and receiving transducers were fabricated 

with PZT crystals (fc ≈ 124.5 kHz) and large brass masses which 

acted as resonating bodies. The O-rings were then placed 

between the transducers with either dry or wet (water) contact as 

shown in FIGURE 6. Wet contact improved signal amplitude, 

but did not affect the results. 

 

3.4 Signal Features 
Signal features are characteristic aspects of a given signal. 

The standard signal feature employed by RUS and PCRT is the 

center frequency of the resonance peak as shown in FIGURE 7. 

In this work we extracted the signal features for O-rings by 

first deconvolving the system function from the received signal 

then processing the resultant signal. An example feature 

extraction is signal regression to a known function such as a 

Lorentzian (FIGURE 7). The parameters of the Lorentzian 

regression (i.e. center frequency, amplitude, and Full-Width-

Half-Max) are then the signal features. Additional signal features 

include the signal energy (squared integral), the average 

 

 
FIGURE 7: EXAMPLE SIGNAL FEATURE EXTRACTION VIA 

LORENTZIAN FIT. 



 5 © 2019 by ASME 

amplitude, the centroidal frequency for multi-Lorentzian signals, 

and amplitude variance. In total, 21 features were extracted from 

each window, which yielded 315 total signal features that were 

fed into the machine learning algorithm. 

 

3.5 Machine Learning 
The machine learning algorithm employed in this work was 

a Random Forest algorithm [26], [27] as implemented by the 

SciPy machine learning library [28], [29]. This algorithm was 

chosen for its multinomial classification and 

characterizationcapabilities. A Random Forest is a democracy of 

decision trees that have been grown based on a training set of 

measured/extracted features and known part characteristics. 

Each tree was grown based on a subsample of the training set so 

they were not identical. The general algorithm is shown 

graphically in FIGURE 8.  

Once the forest is trained, it can be used either for 

multinomial classification or for regression (characterization). In 

both cases, input is collected from all of the trees in the forest. 

For multinomial classification forests, unknown parts are sorted 

into one of N groups based on the majority vote of the trees. This 

results in an MxN logical array for M parts and N classifications. 

For characterization forests, the properties of unknown parts are 

estimated via a regression of the trees (generally an average). 

This results in an MxL number array for M parts and L 

properties. Characterization forests can be used to estimate 

multiple properties at the same time, but generally at the expense 

of larger forests and/or an increase in the number of required 

input features. 

A supervised learning approach was implemented to grow 

three different forests of 500 trees each. The first forest was a 

multinomial classification forest with 11 classifications. The 

second and third forests were regression forests to estimate 

durometer and mass respectively. Each of the forests were 

trained on randomly selected parts that comprised ~50% of the 

total population. For the multinomial classification, the training 

set included ~50% of each classification. 

It is easy to see that the forest is generally robust since each 

tree is trained on a different subset of parts, but cross-validation 

is still necessary. Cross-validation helps to estimate the skill of a 

machine learning model on unseen data. A standard k-fold cross-

validation with 5 folds was employed in this work. This 

partitions the training set into 5 equal sized subsets, retrains 5 

forests on 4/5 sets, and validates on 1/5 sets. The folds do not 

have overlapping validation parts and thus the sensitivity of the 

model to each part can be determined in a small number of 

iterations. 

 

3.6 Analysis 
Three analyses are examined in this work: material-

durometer classification, durometer estimation, and mass 

estimation. Although mass/weight can easily be measured using 

a scale, this analysis was included to demonstrate additional 

characterization capabilities. All three analyses can be run 

simultaneously so that the material, durometer, and mass can be 

ascertained in roughly the same amount of time required to 

determine the mass with a scale. 

After initially training the forests using all 315 extracted 

features, the contribution of each feature to each of the final 

forests was calculated. The top 25 contributing features were 

selected for each forest and the forests were retrained. The 

features were limited to those whose contribution was ≥ 1%. 

These features represented ~85% of the model information for 

each forest. Downselecting features decreased scan times while 

maintaining good results on the training sets. Using all of the 

contributing features may increase the accuracy of the forests by 

1-2%. 

Subsequent to retraining the forests on ~50% of the 

population and 25 signal features, all 890 parts were fed back 

into the forests. Reanalyzing the training set provided a metric 

for how well the forest was trained, which could be used as a 

baseline for the expected performance of the test parts. 

Analyzing the test parts provided a level of model validation and 

indicated the performance of the model on future unknown parts. 

No tuning of the Random Forests was performed in this 

work in order to ascertain the baseline capabilities of this 

approach to characterizing polymer O-rings. There were several 

parameters that controlled how each individual tree grew and 

 
FIGURE 8: SIMPLIFIED FLOW CHART OF A RANDOM FOREST ALGORITHM. 
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FIGURE 9: TYPICAL COLLECTED SIGNALS FOR SEVERAL MATERIALS. 

 

how different the trees were from each other. Tuning would have 

helped find the optimal values for those parameters to achieve 

the sorting goals. With proper tuning, the accuracy of all three 

Random Forests can be expected to increase by several percent 

if not more. 

 

4 RESULTS AND DISCUSSION 
4.1 Scan Results 

Typical results from a resonance sweep of polymer O-rings 

using the system described above is shown in FIGURE 9. 

Several materials (indicated by color) were overlaid to show the 

relative differences. Recall that 21 signal features were extracted 

for each collection window, 11 of which are shown. 

The example spectral plot (FIGURE 10) highlights some drastic 

differences in the received signal for 4 of the material of material 

type, there was not a single feature that could correctly sort all of 

the parts. No single feature contributed more than 10% to any 

model. FIGURE 10 also exemplifies the level of signal variation 

within each of the subpopulations due to age and batch 

variations. 

 

 

 
FIGURE 10: EXAMPLE OF A SECTION OF THE SPECTRA 

FOR O-RINGS. COLORS INDICATE MATERIAL TYPE. 

 

4.2 Multinomial Classification 
A multinomial classification sort was created using the 

Random Forest Classification approach. Note that the forest was 

trained to the “nominal durometers” provided by the 

manufacturer. Once the forest was trained, all of the parts were 

sorted and the results tabulated into a confusion matrix (TABLE 
3). The left-hand labels indicate the true classification while the 

top labels indicate the sorted classification. The classification 

counts were then normalized to the true part count for each group 

(far-right column). Each row indicates what fraction of a given 

group were sorted into which classification and the green 

diagonal cells indicate what fraction of each group was correctly 

sorted. The off-diagonal cells indicate mis-sorts. 

The overall accuracy of the sort was 92.8%, which includes 

both training and test parts. 70A Silicone and 80A EPDM 

exhibited the best performance with 100% accuracy while 70A 

polyurethane exhibited the worst performance with 81% 

accuracy. Accuracy of the test parts was slightly lower than the 

overall accuracy with 84.6%. 

There were two likely sources of error for this sort. Inherent 

uncertainty in the durometer due to the tolerance and 

measurement error on the part of the OEM meant that there was 

a significant likelihood of overlap between durometer groups 

(e.g. 65A & 70A) for the same material. There was also potential 

overlap of durometer groups separated by 10A. If allowances 

were made for an uncertainty of ±5 in durometer, then the 

accuracy of the test parts increased from 84.6% to 90.1%. The 

second likely source or error for this sort was material similarity 

between some groups (e.g. CR-BunaN & BunaN). 

Live testing was performed using 50 of the training parts and 

100 previously untested parts, both of which spanned the 11 

material-durometer groups. The test took ~10s per part once the 

part was loaded. Results from the live testing were 100% and  

98% accuracy for the training parts and previously untested parts 

respectively. 

These results (both live and off-line) were quite good for an 

untuned model. The likelihood of correctly classifying a single 
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TABLE 3: RESULTS OF O-RING MULTINOMIAL CLASSIFICATION SORTING USING A RANDOM FOREST ALGORITHM. THE 

HIGHLIGHTED CELLS INDICATED THE FRACTION OF PARTS CORRECTLY SORTED FOR EACH CLASSIFICATION. 

  Sorted Classification 

#
S

a
m

p
le

s 
p

er
 

A
ct

u
a

l 
C

la
ss

 

  
6

5
A

  
  

  
  

  
 

B
u

n
a

N
 

7
0

A
  

  
  
  

  

B
u

n
a

N
 

9
0

A
  

  
  
  

  
 

B
u

n
a

N
 

7
0

A
  

  

C
R

B
u

n
a

N
 

7
0

A
  

  
  
  

  
  

E
P

D
M

 

8
0

A
  

  
  
  

  
  
 

E
P

D
M

 

7
0

A
  

  

F
lo

ro
si

li
co

n
e
 

7
0

A
  

  
 

P
o

ly
u

re
th

a
n

e
 

9
8

.5
A

 (
5

5
D

) 
  
  

  

P
T

F
E

  

7
0

A
  

  
  
  

  
 

S
il

ic
o

n
e
 

7
5

A
  

  
  
  

  
 

V
it

o
n

 

A
ct

u
a

l 
C

la
ss

if
ic

a
ti

o
n

 

65A BunaN 0.89 0.09 0 0 0 0 0 0.02 0 0 0 97 

70A BunaN 0.02 0.91 0 0.01 0.05 0 0.01 0 0 0 0 224 

90A BunaN 0 0 0.95 0 0 0 0 0 0.05 0 0 21 

70A CRBunaN 0.10 0.06 0 0.84 0 0 0 0 0 0 0 31 

70A EPDM 0 0.11 0 0 0.89 0 0 0 0 0 0 129 

80A EPDM 0 0 0 0 0 1.00 0 0 0 0 0 19 

70A Florosilicone 0.03 0 0 0 0 0 0.94 0.03 0 0 0 32 

70A Polyurethane 0.19 0 0 0 0 0 0 0.81 0 0 0 31 

98.5A (55D) PTFE 0 0 0.06 0.03 0 0 0 0 0.88 0 0.03 33 

70A Silicone 0 0 0 0 0 0 0 0 0 1.00 0 130 

75A Viton 0 0 0 0 0 0 0 0 0.01 0 0.99 143 

#Samples per Sorted Class 101 229 22 29 125 20 32 28 31 130 143 890 

 

part randomly was ~9.1% while the likelihood of correctly 

sorting 10 parts randomly is 3.86E-11. This demonstrated the 

feasibility of using resonance to classify O-rings in production 

or maintenance environments. 

 

4.3 Durometer Estimation 
A durometer estimation analysis was created using the 

Random Forest Regression approach. Keep in mind that the 

forest was trained to the “nominal durometers” provided by the 

manufacturer. Once the forest was trained, all of the parts were 

analyzed using the regression model and the results summarized 

in FIGURE 11 and tabulated in TABLE 4. 

FIGURE 11 plots the nominal durometer vs. the average 

estimated durometer for each durometer group. The error bars  

 

 
FIGURE 11: DUROMETER ESTIMATES FOR POPULATIONS 

OF O-RINGS USING ULTRASONIC SIGNAL FEATURES. 

represent the maximum differences between the nominal and 

estimated durometer for each group and the dashed lines 

represent the ±5 tolerance. The vast majority of durometer 

estimates fell within the tolerance of the nominal durometer. 

TABLE 4 tabulates the results by distinct material-

durometer groups. All numbers were normalized to the total 

population and the relative size of each group is provided for 

reference. The overall accuracy of the durometer estimation was 

99.4% within 5.0 of the nominal durometers (the standard 

durometer tolerance) and 81.2% within 0.1. Estimation accuracy 

of the test parts was nearly as good as the overall accuracy with 

98.8% falling within 5.0 of the nominal durometers and 84.6% 

of estimates falling within 0.1. Only 0.6% of total parts (1.2% of 

test parts) fell outside the ±5.0 tolerance, all of which came from 

the 98.5A PTFE group. This fallout was likely due to the higher 

 

TABLE 4: DUROMETER ESTIMATION BREAKDOWN BY 

MATERIAL-DUROMETER GROUPS AS A FRACTION OF THE 

ENTIRE POPULATION. 

Durometer Material 
% of Total 

Population 

Estimation Results (%) 

Within 

±0.1 

Within 

±5 

Outside 

±5 

65A BunaN 10.90 6.29 4.61 0.00 

70A BunaN 25.17 21.24 3.93 0.00 

90A BunaN 2.36 1.35 1.01 0.00 

70A CR-BunaN 3.48 1.80 1.69 0.00 

70A EPDM 14.49 12.13 2.36 0.00 

80A EPDM 2.13 1.69 0.45 0.00 

70A Florosilicone 3.60 3.37 0.22 0.00 

70A Polyurethane 3.48 2.13 1.35 0.00 

98.5A (55D) PTFE 3.71 2.70 0.45 0.56 

70A Silicone 14.61 13.82 0.79 0.00 

75A Viton 16.07 14.72 1.35 0.00 
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FIGURE 12: MASS ESTIMATES FOR O-RINGS USING 

ULTRASONIC SIGNAL FEATURES. 

 

relative uncertainty in the durometer measurement near the top 

of the Shore A scale (100). 

Live testing was performed using 50 of the training parts and 

100 previously untested parts, both of which spanned the 11 

material-durometer groups. The test took ~5 s per part once the 

part was loaded. Of the 50 training parts, 100% fell within 5.0 A 

and 98% fell within 0.1A. Testing the previously untested parts 

resulted in 99% of parts within 5.0A and 94% within 0.1A. 

These were remarkable results given the difficulties in 

measuring durometer in general and the durometer of O-rings in 

particular. Also noteworthy was that the resonance durometer 

measurements had a higher resolution than the Shore 

measurement and were potentially more accurate. Additional 

study is warranted. The use of Shore A coupons along with a well 

calibrated Shore A measure would greatly assist in validation. 

 

4.4 Mass Estimation 
A mass estimation analysis was created using the Random 

Forest Regression approach. Once the forest was trained, all of 

the parts were then fed back through the regression model and 

the results summarized in FIGURE 12 and tabulated in TABLE 
5. 

FIGURE 12 plots the measured mass vs. the estimated mass 

where the dashed lines represent the ±5 mg measurement 

uncertainty from the scale. This analysis exhibited a little more 

fallout than the durometer analysis, but still yielded good results 

for an untuned model.  

TABLE 5 breaks the results down by each of the distinct 

material-durometer groups. All numbers were normalized to the 

total population and the relative size of each group is provided 

for reference. The overall accuracy of the mass estimation was 

94.0% within 5.0 mg of the nominal mass and 61.1% within 0.5 

mg. The estimation accuracy of the test parts was not quite as 

good with 87.4% falling within 5.0 mg of the nominal mass and 

17.8% of estimates falling within 0.5 mg. Approximately 6% of 

total parts (12.6% of test parts) fell outside the ±5.0 mg 

TABLE 5: MASS ESTIMATION BREAKDOWN BY MATERIAL-

DUROMETER GROUPS AS A FRACTION OF THE ENTIRE 

POPULATION. 

Durometer Material 
% of Total 

Population 

Estimation Results (%) 

Within 

±0.5 mg 

Within 

±5 mg 

Outside 

±5 mg 

65A BunaN 10.90 7.53 3.26 0.11 

70A BunaN 25.17 15.17 8.88 1.12 

90A BunaN 2.36 1.12 0.56 0.67 

70A CR-BunaN 3.48 1.80 1.12 0.56 

70A EPDM 14.49 8.99 4.27 1.24 

80A EPDM 2.13 1.35 0.67 0.11 

70A Florosilicone 3.60 2.36 1.24 0.00 

70A Polyurethane 3.48 2.36 1.12 0.00 

98.5A (55D) PTFE 3.71 2.13 0.45 1.12 

70A Silicone 14.61 9.44 5.17 0.00 

75A Viton 16.07 8.88 6.18 1.01 

 

measurement uncertainty, and came from multiple 

material/durometer groups. 98.5A PTFE & 90A BunaN had the 

highest fallout percentage per group with 30.3% and 28.6% 

respectively, but only accounted for 1.8% of the total fallout. 70A 

BunaN, 70A EPDM, and 75A Viton each contributed ~1% to the 

total fallout. 

Live testing was performed using 50 of the training parts and 

100 previously untested parts, both of which spanned the 11 

material-durometer groups. The test took ~5 s per part once the 

part was loaded. Mass estimates for all 150 parts fell within 5.0 

mg of the measured mass. 

These are great results given that the mass of a polymer 

specimen was deduced from a resonance measurement. This 

demonstrates the potential diverse characterization capabilities 

of our method. All three of the above analyses can be run 

simultaneously in roughly the same amount of time it takes to 

use a scale to determine the mass. 

 

5 Conclusion 
Polymer O-rings comprise an entire class of components 

(including some with safety/mission critical applications) that is 

currently underserved by NDT&E. Although polymeric O-rings 

have historically been difficult to characterize via nondestructive 

means (particularly ultrasonic means), this paper presents a 

novel approach. The results discussed herein unequivocally 

demonstrate that ultrasonic resonance methods are sensitive to 

material differences in polymer O-rings. Both manufactures and 

consumers of O-rings can utilize this method for process control 

and material/property verification. There is also the potential to 

use this method to estimate other desired properties. 

This preliminary study used RUS and machine learning to 

sort O-rings based on material and durometer into 11 distinct 

classifications with 93% accuracy using a test that took less than 

10s per part. In addition to the multinomial sort, this work 

correctly estimated both the mass (94% fell within 5 mg) and 

durometer (99% fell within the tolerance of 5) using a test that 

took less than 5 s. 

These results can likely be improved upon by implementing 

several small changes. 
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• Tuning the forest growth parameters will likely improve the 

results by a few per cent.  

• Increasing the number of trees in the forest may increase the 

accuracy, but this increase is subject to the law of 

diminishing returns. Generally, a forest size of 500 trees is 

past the point of meaningful gains. 

• Using all contributing features instead of the top 25 will 

increase the information available to the forest, but is not 

guaranteed to increase accuracy. This will, however, 

increase the scan time. 

• Increasing the number of training parts, especially in 

underrepresented groups will likely have a significant effect 

on the accuracy of the models. 

 

Given the standard method for determining durometer of O-

rings, the results presented in this paper are limited in scope due 

to the uncertainty of the durometer. The scope of these results is 

also limited by holding O-ring sizes constant. Future work 

should focus on verification and validation of the relationship 

between resonance signal features and polymer material 

properties. Using Shore A coupons would greatly assist in that 

effort. Additional topics for future work include identifying the 

minimum training set required and detecting polymer 

degradation and age. 

 

ACKNOWLEDGEMENTS 
The authors thank Drs. Ping Yang and Robert Bernstein 

from Sandia National Laboratories for their input and 

encouragement. 

This work was funded through a Defense Logistics Agency 

(DLA) Phase II Small Business Technology Transfer (STTR), 

contract SP4701-17-C-0066. 

 

REFERENCES 
[1] AIA, Counterfeit Parts: Increasing Awareness and 

Developing Countermeasures, AIA, Arlington, VA, 

2011. 

[2] Stern, W., “Warning! Bogus parts have turned up in 

commercial jets. Where’s the FAA?,” BusinessWeek, 

June 10, ’96 issue, 1996. 

[3] Bajak, F., “’Bogus Parts’ Plague Airlines: Substandard 

Components Put Public at Risk,” Associated Press at 

Daily News, 1996. 

[4] Mckenzie, V., “Who’s Policing Counterfeit Airplane 

Parts?,” The Crime Report, 2017 

[5] Baker, B. J., “Identifying the Probability of an Accident 

Occurring with Suspected Unapproved Parts as a 

Contributing Factor,” Journal of Aviation/ Aerospace 

Education & Research, Vol. 10 (2), 2001. 

[6] FAA, Suspected ‘Unapproved Parts’ Program Plan, 

FAA, Washington, D.C., 1995. 

[7] OIG, AV2017049: Enhancements are Needed to FAA’s 

Oversight of the Suspected Unapproved Parts Program, 

DOT OIG, Washington, D.C., 2017. 

[8] USA v. Cooper, No. 0:04-CR-60114 (Southern District 

of Florida), 2004. 

[9] USA v. Fifeco, No. 2:06-CV-00512 (District of Utah), 

2006. 

[10] “Freudenberg Introduces Anti-fraud Markings on 

Seals,” Rubber & Plastics News, 2009 

[11] Violino, B., “Parker Hannifin Embeds RFID Tags in O-

Rings,” RFID Journal, 2013. 

[12] Bernstein, Robert. Private communications, 2018 

[13] Parker O-Ring Handbook, Parker Hannifin Corp., 

Cleveland, OH, 2018. 

[14] Basic Rubber Testing: Selecting Methods for a Rubber 

Test Program, Ed. Dick, J. S., ASTM International, 

West Conshohocken, PA, 2003. 

[15] Everall, N., Chalmers, J., Griffiths, P., Vibrational 

Spectroscopy of Polymers: Principles and Practice, 

John Wiley & Sons, Hoboken, NJ, 2007. 

[16] Siesler, H., “Vibrational Spectroscopy of Polymers,” 

International Journal of Polymer Analysis and 

Characterization, Vol. 16 (8), pp. 519-541, 2011. 

[17] ASTM D2240-15e1, “Standard Test Method for Rubber 

Property-Durometer Hardness,” ASTM International, 

2015. 

[18] Mohamed, M. I., Aggag, G. A., “Uncertainty evaluation 

of shore hardness testers,” Measurement, vol. 33, pp. 

251-257, 2003. 

[19] ASTM E2534-15, Standard Practice for Process 

Compensated Resonance Testing Via Swept Sine Input 

for Metallic and Non-Metallic Parts, ASTM 

International, West Conshohocken, PA, 2015. 

[20] ASTM E3081-16, Standard Practice for Outlier 

Screening Using Process Compensated Resonance 

Testing via Swept Sine Input for Metallic and Non-

Metallic Parts, ASTM International, West 

Conshohocken, PA, 2016. 

[21] ASTM E3213-19, Standard Practice for Part-To-Itself 

Examination Using Process Compensated Resonance 

Testing Via Swept Sine Input for Metallic and Non-

Metallic Parts, ASTM International, West 

Conshohocken, PA, 2019. 

[22] Livings, R., Mayes, A., Biedermann, E., Heffernan, J., 

Jauriqui, L., Mazdiyasni, S., “Detection of microtexture 

regions in titanium turbine engine disks using process 

compensated resonance testing: A modeling study,” 

45th Review of Progress in Quantitative Nondestructive 

Evaluation, Eds. Bond, L., Holland, S., Laflamme, S., 

paper 020022, 2019. 

[23] Heffernan, J., Biedermann, E., Mayes, A., Livings, R., 

Jauriqui, L., Mazdiyasni, S., “Validation of process 

compensated resonance testing (PCRT) sorting 

modules trained with modeled data,” 45th Review of 

Progress in Quantitative Nondestructive Evaluation, 

Eds. Bond, L., Holland, S., Laflamme, S., paper 

020020, 2019. 

[24] Mayes, A., Heffernan, J., Jauriqui, L., Livings, R., 

Biedermann, E., Aldrin, J., Goodlet, B., Mazdiyasni, S., 

“Process Compensated Resonance Testing (PCRT) 

Inversion for Material Characterization and Digital 



 10 © 2019 by ASME 

Twin Calibration,” 45th Review of Progress in 

Quantitative Nondestructive Evaluation, Eds. Bond, L., 

Holland, S., Laflamme, S., paper 020019, 2019. 

[25] Schmerr, L., Song, J.-S., Ultrasonic Nondestructive 

Evaluation Systems, Springer US, 2007. 

[26] Breiman, L., “Random Forests,” Machine Learning, 

Vol. 45 (1), pp. 5-32, 2001. 

[27] Dangeti, P., Statistics for Machine Learning, Packt 

Publishing, Birmingham, UK, 2017. 

[28] Géron, A., Hands-On Machine Learning with Scikit-

Learn & TensorFlow, O’Reilly Media, Sebastopol, CA, 

2017. 

[29] 1.11 Ensemble Methods, Python-Scikit-Learn, 2018, 

https://scikit-

learn.org/stable/modules/ensemble.html#forest. 

 

https://scikit-learn.org/stable/modules/ensemble.html#forest
https://scikit-learn.org/stable/modules/ensemble.html#forest

